Answer:
CRTs consume less power than LCDs.
hope it helps (^^)
# Cary on learning
Answer:
471 days
Explanation:
Capacity of Carvins Cove water reservoir = 3.2 billion gallons i.e. 3.2 x 10˄9 gallons
As,
1 gallon = 0.133 cubic feet (cf)
Therefore,
Capacity of Carvins Cove water reservoir in cf = 3.2 x 10˄9 x 0.133
= 4.28 x 10˄8
Applying Mass balance i.e
Accumulation = Mass In - Mass out (Eq. 01)
Here
Mass In = 0.5 cfs
Mass out = 11 cfs
Putting values in (Eq. 01)
Accumulation = 0.5 - 11
= - 10.5 cfs
Negative accumulation shows that reservoir is depleting i.e. at a rate of 10.5 cubic feet per second.
Converting depletion of reservoir in cubic feet per hour = 10.5 x 3600
= 37,800
Converting depletion of reservoir in cubic feet per day = 37, 800 x 24
= 907,200
i.e. 907,200 cubic feet volume is being depleted in days = 1 day
1 cubic feet volume is being depleted in days = 1/907,200 day
4.28 x 10˄8 cubic feet volume will deplete in days = (4.28 x 10˄8) x 1/907,200
= 471 Days.
Hence in case of continuous drought reservoir will last for 471 days before dry-up.
The rate of gain for the high reservoir would be 780 kj/s.
A. η = 35%
W =
W = 420 kj/s
Q2 = Q1-W
= 1200-420
= 780 kJ/S
<h3>What is the workdone by this engine?</h3>
B. W = 420 kj/s
= 420x1000 w
= 4.2x10⁵W
The work done is 4.2x10⁵W
c. 780/308 - 1200/1000
= 2.532 - 1.2
= 1.332kj
The total enthropy gain is 1.332kj
D. Q1 = 1200
T1 = 1000
<h3>Cournot efficiency = W/Q1</h3>
= 1200 - 369.6/1200
= 69.2 percent
change in s is zero for the reversible heat engine.
Read more on enthropy here: brainly.com/question/6364271
Answer:
51.4 Ohms
Explanation:
By applying voltage division rule
where v is voltage, subscripts i and f represnt initial and final, R is resistance, m is internal and l is external.Substituting 7V for final voltage, 10V for initial voltage and the external resistance as 120 Ohms then