During this time, the total mechanical energy of the object remains constant.
Answer: Option C
<u>Explanation:</u>
The sum total of potential energy and the kinetic energy presented in the system is called mechanical energy. The total mechanical energy in the system, which represents the combined potential and kinetic energies, remains constant as long as the only force work at conservative forces, and mechanical energy is maintained on this principle.
For example, a gravity box in which we throw the ball straights up, and then leave the hand with a specific amounts of kinetic energy. In the first half of the track, there is no kinetic energy, but it has potential energy similar to kinetic energy that it had when that left our hand. When we catch that again, it has the same kinetic energy as when that left our hand. That is why gravity belongs to the category of conservative forces.
Answer:
Magnitude of electric field = E = q/Aε0
Explanation:
Consider plates are placed at a distance of d. As given in the question the charge stored on the plates have magnitude q and given by:
q = CV
And
V = q/C ……. (i)
The capacitance is given by the following equation:
C = Aε0/d ……. (ii)
Put equation (ii) in (i)
,
V = qd/ Aε0 …..(iii)
The electric field is defined as:
E = V/d …… (iv)
Put equation (iii) in (iv),
E = qd/ Aε0d
E = q/Aε0
Hence, the magnitude of electric field will be q/Aε0 .
Answer:
1. 60 kg m/s
2. 2.4 kg
3. none they both have same momentum
By Newton's 2nd law, m*a=sum_of_forces where m is the mass and a the acceleration. Here there are two forces in opposed directions.
Thus 5*a=40-8=32 therefore a=32/5=6.4m^s/2
To solve this problem, we know that:
1 psi = 6894.76 Pa
1 lb / ft^2 = 47.88 Pa
Therefore:
a. 1500 x 10^3 Pa * (1 lb / ft^2 / 47.88 Pa) = 31,328.32 lb
/ ft^2
b. 1500 x 10^3 Pa * (1 psi / 6894.76 Pa) = 217.56 psi