1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
choli [55]
3 years ago
13

A small box of mass m1 is sitting on a board of mass m2 and length L. The board rests on a frictionless horizontal surface. The

coefficient of static friction between the board and the box is μs. The coefficient of kinetic friction between the board and the box is, as usual, less than μs. Throughout the problem, use g for the magnitude of the acceleration due to gravity. In the hints, use Ff for the magnitude of the friction force between the board and the box. Find Fmin, the constant force with the least magnitude that must be applied to the board in order to pull the board out from under the the box (which will then fall off of the opposite end of the board).
Physics
1 answer:
Nadusha1986 [10]3 years ago
5 0

Answer:

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}

Explanation:

The Newton’s second law states that the net force on an object is the product of mass of the object and final acceleration of the object. The expression of newton’s second law is,

\sum {F = ma}

Here, is the sum of all the forces on the object, mm is mass of the object, and aa is the acceleration of the object.

The expression for static friction over a horizontal surface is,

F_{\rm{f}}} \leq {\mu _{\rm{s}}}mg

Here, {\mu _{\rm{s}}} is the coefficient of static friction, mm is mass of the object, and g is the acceleration due to gravity.

Use the expression of static friction and solve for maximum static friction for box of mass {m_1}

Substitute  for in the expression of maximum static friction {F_{\rm{f}}} = {\mu _{\rm{s}}}mg

{F_{\rm{f}}} = {\mu _{\rm{s}}}{m_1}g

Use the Newton’s second law for small box and solve for minimum acceleration aa to pull the box out.

Substitute  for , [/tex]{m_1}[/tex] for in the equation .

{F_{\rm{f}}} = {m_1}a

Substitute {\mu _{\rm{s}}}{m_1}g for {F_{\rm{f}}} in the equation {F_{\rm{f}}} = {m_1}a

{\mu _{\rm{s}}}{m_1}g = {m_1}a

Rearrange for a.

a = {\mu _{\rm{s}}}g

The minimum acceleration of the system of two masses at which box starts sliding can be calculated by equating the pseudo force on the mass with the maximum static friction force.

The pseudo force acts on in the direction opposite to the motion of the board and the static friction force on this mass acts in the direction opposite to the pseudo force. If these two forces are cancelled each other (balanced), then the box starts sliding.

Use the Newton’s second law for the system of box and the board.

Substitute for for in the equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right)a

Substitute for in the above equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

There is no friction between the board and the surface. So, the force required to accelerate the system with the minimum acceleration to slide the box over the board is equal to total mass of the board and box multiplied by the acceleration of the system.

You might be interested in
A horizontal line on a displacement-time graph means the object is
r-ruslan [8.4K]

Answer:

traveling further away

Explanation:

4 0
3 years ago
A crate is sliding on the floor. If there is a total force acting on the crate in the same direction as it is sliding, the crate
Leto [7]

But we do not know whether the force is pushing or pulling (the same direction (both forces are parallel) but: .........[ ]<-F-- or .......[ ]--F-->). I suppose the correct answer is B

7 0
3 years ago
What do we call the small changes that
Lelu [443]

Answer:

The "butterfly Effect"

Explanation:

The "butterfly effect" will probably have big changes in the future.

6 0
3 years ago
Please help homework due tomorrow,,,
Ad libitum [116K]
Cody ...

Everything on this page is solved with the SAME formula !

             Distance = (speed) x (time) .


Before I get into how to solve each problem, we need to notice that
this whole sheet deals with speed, NOT velocity.

'Velocity' is speed AND THE DIRECTION OF THE  MOTION.
Nothing on this page ever mentions direction, so there's no velocity
anywhere on the page.

Your teacher may not be happy if you talk about this on your homework,
but that's too bad.  Just don't say "velocity" in any of your answers.
Say "speed", and if the teacher complains about that, then it's time to
let the teacher have it with both barrels.
 

1).  Speed = (distance covered) / (time to cover the distance)

2).  Speed = (distance covered) / (time to cover the distance)

3).  Distance  =  (average speed of travel) x (time traveling at that speed)

4).  Time to cover the distance = (distance) / (speed)

5).  Car's     speed = (distance the car covered)        / (time the car took)
      Sprinter speed = (distance the sprinter covered) / (time the sprinter took)

      Calculate the car's speed.
      Calculate the sprinter's speed.
     
      ... Look at the two speeds.
          Decide which one is faster.
     
      ... Subtract the slower one from the faster one. 
          The difference is the answer to "by how much?" .

6).  Distance  =  (speed) x (time spent moving at that speed)

7).  Average speed  =  (TOTAL distance covered)
                                      divided by
                                    (time to cover the TOTAL distance).
   

8 0
3 years ago
If the period of a given wave is 6 seconds what si the frequency of the wave
Veronika [31]
Frequency =1/period
Freq= 1/6= 0.17 Hertz
3 0
3 years ago
Other questions:
  • 50-g of hot water at 65 degree C is poured into a cavity in a very large block of ice at 0 degrees C. The final temperature of t
    6·1 answer
  • The largest tendon in the body, the Achilles tendon, connects the calf muscle to the heel bone of the foot. This tendon is typic
    9·1 answer
  • Two small spherical insulators separated by 2.5 cm, which is much greater than either of their diameters. Both carry positive ch
    11·1 answer
  • A bullet is fired with a velocity of 100 m/s from the ground at an angle of 60° with the horizontal. Calculate the horizontal ra
    13·1 answer
  • At some instant and location, the electric field associated with an electromagnetic wave in vacuum has the strength 71.9 V/m. Fi
    10·1 answer
  • The windmill has 7 blades and rotates at an angular speed of 0.5 rad/s. The opening between successive blades is equal to the wi
    8·1 answer
  • Which of the following accurately describes circuits? A. In a parallel circuit, the same amount of current flows through each pa
    15·2 answers
  • AYUDAAA! <br> Hola, alguien podría ayudarme en esto la C), me ha complicado demasiado!!
    13·1 answer
  • Which quantities are scalars?​
    12·2 answers
  • What material structure explanation lies behind the fact that the propagation velocity of longitudinal waves is the lowest in ga
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!