Answer:
36 km/h
Explanation:
The total velocity is the sum of the two velocities that add to the movement of the boat.
Since the wind pushes the boat at 21 km/h and the current that runs in the direction of the movent of the boat is 15 km/h, the total velocity at wich the boat moves is:
21km/h + 15 km/h = 36 km/h
Let's say the distance is D. Then the time going is D/10 sec. The time returning is D/20 s. The total time is 3D/20 s, and the total distance is 2D. The average speed for the round trip is (total distance)/(total time). That's (2D) ÷ (3D/20). That's (40D/3D) which is 13-1/3 m/s. (I thought it was going to depend on the distance, but it doesn't.)
Answer:
Explanation:
Given
car A had a head start of 
and it starts at x=0 and t=0
Car B has to travel a distance of 
where
is the distance travel by car A in time t
distance travel by car A is

For car B with speed 



Deposition is the process in which sediments, soil and rocks are added to a landform or landmass. When previous weathers surface material , is deposited to a building layer of sediment .
Answer:
the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°
Explanation:
Given the data in the question and as illustrated in the diagram below.
speed of the ship v = 0.90c
base of the ladder from the wall x₀ = 3.0 m
top of the later above the floor y = 4.0 m
we determine angle θ.
from the diagram,
tanθ = y/x₀
tanθ = y / x₀√( 1 - v²/c² )
we substitute
tanθ = 4.0 / 3.0√( 1 - ((0.9c)²/c²) )
tanθ = 4.0 / 3.0√( 1 - ((0.9²)c²/c²) )
tanθ = 4.0 / 3.0√( 1 - (0.9²) )
tanθ = 4.0 / 3.0√( 1 - 0.81 )
tanθ = 4.0 / 3.0√0.19
tanθ = 4.0 / 1.30766968
tanθ = 3.058876
θ = tan⁻¹( 3.058876 )
θ = 71.8965 ≈ 71.9°
Therefore, the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°