Answer:
Yes it will move and a= 4.19m/s^2
Explanation:
In order for the box to move it needs to overcome the maximum static friction force
Max Static Friction = μFn(normal force)
plug in givens
Max Static friction = 31.9226
Since 36.6>31.9226, the box will move
Mass= Wieght/g which is 45.8/9.8= 4.67kg
Fnet = Fapp-Fk
= 36.6-16.9918
=19.6082
=ma
Solve for a=4.19m/s^2
Yo sup??
we should know that
work done=force*displacement
W=F.s
F=10 N
s=8 m
therefore
W=10*8
=80 N
Hope this helps.
Answer:
The ratio is 
Explanation:
The diagram for this question is shown on the first uploaded image
Here we are assume the acceleration of the train is a
which makes the acceleration of each car a
From the question we are told that
Considering the second car
The force causing it s movement is mathematically represented as

Considering the first car
The force causing it s movement is mathematically represented as

=> 
=> 
=> 
=> 
Ok
........................
Answer:
v_f =63 m/s
Explanation:
given,
starting force = 0 N
uniform rate increase to 36 N
time of action of Force = 35 s
mass of the body = 10 Kg
Speed of the object = ?
From the given data
if we plot F-t curve we will get a triangular shape
we know,
Impulse = Area between F-t curve
= (1/2) x base x height
= 0.5 x 35 x 36
= 630 N.s
now use Impulse-momentum theorem
Impulse = change in momentum
630 = 10 x (v_f - vi)
630 = 10 x (v_f - 0)
v_f =63 m/s
Speed of the object at 35 sec is equal to v_f =63 m/s