Answer:
distance = 6 m
Explanation:
- Distance is a scalar quantity (so, only magnitude, no direction), and it is calculated as the scalar sum of all the distances travelled by an object during its motion, regardless of the direction. So, in this problem, the distance covered by the pinecone is
d = 4 m + 2 m = 6 m
- Displacement is a vector quantity (magnitude+direction), and its magnitude is calculate as the distance in a straight line between the final position and the initial position of the object. In this case, the final position is 2 m west and the initial position is 0 m, so the displacement of the pinecone is
d = 2 m west - 0 m = 2 m west
So, a scalar quantity from this scenario is
distance = 6 m
Answer:
The deformation is 0.088289 m
The final height of the monument is 170-0.088289 = 169.911702 m
Explanation:
Thermal coefficient of marble varies between (5.5 - 14.1) ×10⁻⁶/K = α
So, let us take the average value
(5.5+14.1)/2 = 9.8×10⁻⁶ /K
Change in temperature = 35-(-18) = 53 K = ΔT
Original length = 170 m = L
Linear thermal expansion

The deformation is 0.088289 m
The final height of the monument is 170-0.088289 = 169.911702 m (subtraction because of cooling)
No. The correct answer is A.
The canoe is moving at 14.1 m/s to the right after the collision.
Explanation:
According to the law of conservation of momentum, in absence of external forces the total momentum of the system must be conserved before and after the collision. So we can write:
where:
is the mass of the canoe
is the initial velocity of canoe (we take right as positive direction, and since the canoe is moving to the left, its velocity is negative)
is the final velocity of the canoe
is the mass of the raft
is the initial velocity of the raft
is the final velocity of the raft
Re-arranging the equation and substituting the values, we find: the final velocity of the canoe:

So, the canoe is moving at 14.1 m/s to the right after the collision.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Designing warning and evacuation systems could be a step in a plan designed to mitigate the negative impacts of a natural hazard.