1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixas84 [53]
3 years ago
10

When gamma radiation is released by an atom,. A) it is the only radiation emitted. B) it only ever accompanies beta radiation. C

) it only ever accompanies alpha radiation. D) it usually accompanies beta or alpha radiation..
Physics
2 answers:
Sidana [21]3 years ago
7 0
Hello!

The gamma radiation haven't mass or charge. When it is released, it usually accompanies beta or alpha radiation. Letter d).

Hugs!
musickatia [10]3 years ago
6 0

Answer: D) it usually accompanies beta or alpha radiation..

Explanation:-

Gamma decay : In this process, the unstable nuclei transformed into stable nuclei by releasing gamma rays along with beta or alpha decay. It is observed when a nucleus is formed in an excited state and then decays to its ground state by emitting an electromagnetic radiation.

General representation of an element is given as:   _Z^A\textrm{X}

where,

Z represents Atomic number

A represents Mass number

X represents the symbol of an element

General representation of gamma decay :

_Z^A\textrm{X}^*\rightarrow _Z^A\textrm{X}+_0^0\gamma

You might be interested in
30 points, brainiest, high school physics problem, please help with explanations.
Ymorist [56]

Answer:

I think the answer is C too

4 0
3 years ago
What are the steps that produce electricity from this fuel
deff fn [24]
The nuclear fuel cycle is the series of industrial processes which involve the production of electricity from uranium in nuclear power reactors.
Uranium is a relatively common element that is found throughout the world. It is mined in a number of countries and must be processed before it can be used as fuel for a nuclear reactor.
Fuel removed from a reactor, after it has reached the end of its useful life, can be reprocessed so that most is recycled for new fuel.
4 0
3 years ago
I need both parts please (a) Given a material with an attenuation coefficient (a) of 0.6/cm, what is the intensity of a beam (wi
Masteriza [31]

Answer:

<h3>a.</h3>
  • After it has traveled through 1 cm : I(1 \ cm) = 0.5488 I_0
  • After it has traveled through 2 cm : I(2 \ cm) = 0.3012 I_0
<h3>b.</h3>
  • After it has traveled through 1 cm : od( 1\ cm) =  0.2606
  • After it has traveled through 2 cm :  od( 2\ cm) =  0.5211

Explanation:

<h2>a.</h2>

For this problem, we can use the Beer-Lambert law. For constant attenuation coefficient \mu the formula is:

I(x) = I_0 e^{-\mu x}

where I is the intensity of the beam, I_0 is the incident intensity and x is the length of the material traveled.

For our problem, after travelling 1 cm:

I(1 \ cm) = I_0 e^{- 0.6 \frac{1}{cm} \ 1 cm}

I(1 \ cm) = I_0 e^{- 0.6}

I(1 \ cm) = I_0 e^{- 0.6}

I(1 \ cm) = 0.5488 \ I_0

After travelling 2 cm:

I(2 \ cm) = I_0 e^{- 0.6 \frac{1}{cm} \ 2 cm}

I(2 \ cm) = I_0 e^{- 1.2}

I(2 \ cm) = I_0 e^{- 1.2}

I(2 \ cm) = 0.3012 \ I_0

<h2>b</h2>

The optical density od is given by:

od(x) = - log_{10} ( \frac{I(x)}{I_0} ).

So, after travelling 1 cm:

od( 1\ cm) = - log_{10} ( \frac{0.5488 \ I_0}{I_0} )

od( 1\ cm) = - log_{10} ( 0.5488 )

od( 1\ cm) = - (  - 0.2606)

od( 1\ cm) =  0.2606

After travelling 2 cm:

od( 2\ cm) = - log_{10} ( \frac{0.3012 \ I_0}{I_0} )

od( 2\ cm) = - log_{10} ( 0.3012 )

od( 2\ cm) = - (  - 0.5211)

od( 2\ cm) =  0.5211

3 0
3 years ago
A 220 g mass is on a frictionless horizontal surface at the end of a spring that has force constant of 7.0
Talja [164]

The concept of conservation of energy and harmonic motion allows to find the result for the power where the kinetic and potential energy are equal is:

        x = 0.135 cm

Given parameters

  • The mass m = 220 g = 0.220 kg
  • The spring cosntnate3 k = 7.0 N / m
  • Initial displacement A = 5.2 cm = 5.2 10-2 m

To find

  • The position where the kinetic and potential energy are equal

 

A simple harmonic movement is a movement where the restoring force is proportional to the displacement, the result of this movement is described by the expression.

          x = A cos wt + fi

          w² = \frac{k}{m}

Where x is the displacement from the equilibrium position, A the initial amplitude of the system, w the angular velocity t the time, fi a phase constant determined by the initial conditions, k the spring constant and m the mass.

The speed is defined by the variation of the position with respect to time.

       v = \frac{dx}{dt}

let's evaluate

       v = - A w sin (wt + Ф)

Since the body releases for a time t = 0 the velocity is zero, therefore the expression remains.

       0 = - A w sin Ф

For the equality to be correct, the sine function must be zero, this implies that the phase constant is zero

        x = A cos wt

Let's find the point where the kinetic and potential energy are equal.

        K = U

        ½ m v² = m g x

       

we substitute

        ½ A² w² sin² wt = g A cos wt

        sin² wt = \frac{2g}{A}  cos wt

let's calculate

      w = \sqrt{\frac{7}{0.220} }  

      w = 5.64 rad / s

      sin² 5.64t = 2 9.8 / 0.052 cos 5.64t

      sin² 5.64t = 376.92 cos 5.64 t

      1 - cos² 5.64t = 376.92 cos 5.64t

      cos² 5.64t -376.92 cos564t -1 = 0

we make the change of variable

       x = cos 5.64t

      x²- 376.92 x - 1 = 0

      x = 0.026

      cos 5.64t = 0.026

   

Let's find the displacement for this time

       x = 5.2 10-2 0.026

       x = 1.35 10-3 m

In conclusion Using the concepts of conservation of energy and harmonic motion we can find the result for the could where the kientic and potential enegies are equal is:

        x = 0.135 cm

Learn more here: brainly.com/question/15707891

8 0
3 years ago
A proton has a speed of 3.50 Ã 105 m/s when at a point where the potential is +100 V. Later, itâs at a point where the potential
ruslelena [56]

Answer:

(a). The change in the protons electric potential is 0.639 kV.

(b). The change in the potential energy of the proton is 1.022\times10^{-16}\ J

(c). The work done on the proton is -8\times10^{-18}\ J.

Explanation:

Given that,

Speed v= 3.50\times10^{5}\ m/s

Initial potential V=100 V

Final potential = 150 V

(a). We need to calculate the change in the protons electric potential

Potential energy of the proton is

U=qV=eV

Using conservation of energy

K_{i}+U_{i}=K_{f}+U_{f}

\dfrac{1}{2}mv_{i}^2+eV_{i}=\dfrac{1}{2}mv_{f}^2+eV_{f}

]\dfrac{1}{2}mv_{i}^2-]\dfrac{1}{2}mv_{f}^2=e(V_{f}-V_{i})

\dfrac{1}{2}mv_{i}^2-]\dfrac{1}{2}mv_{f}^2=e\Delta V

\Delta V=\dfrac{m(v_{i}^2-v_{f}^2)}{2e}

Put the value into the formula

\Delta V=\dfrac{1.67\times10^{-27}(3.50\times10^{5}-0)^2}{2\times1.6\times10^{-19}}

\Delta V=639.2=0.639\ kV

(b). We need to calculate the change in the potential energy of the proton

Using formula of potential energy

\Delta U=q\Delta V

Put the value into the formula

\Delta U=1.6\times10^{-19}\times639.2

\Delta U=1.022\times10^{-16}\ J

(c). We need to calculate the work done on the proton

Using formula of work done

\Delta U=-W

W=q(V_{2}-V_{1})

W=-1.6\times10^{-19}(150-100)

W=-8\times10^{-18}\ J

Hence, (a). The change in the protons electric potential is 0.639 kV.

(b). The change in the potential energy of the proton is 1.022\times10^{-16}\ J

(c). The work done on the proton is -8\times10^{-18}\ J.

5 0
4 years ago
Other questions:
  • Friction heats up the brake pads of a car as it stops what is this an example of?
    9·1 answer
  • A road perpendicular to a highway leads to a farmhouse located 7 mile away. An automobile traveling on the highway passes throug
    5·1 answer
  • What is the formula for force
    9·1 answer
  • Please help, Give a paragraph about Pulley's
    13·1 answer
  • Air in the amount of 2 lbm is contained in a well-insulated, rigid vessel equipped with a stirring paddle wheel. The initial sta
    7·1 answer
  • ANSWER SOOONN PLZ!!
    12·1 answer
  • State the name of the process in each of the following changes of state:
    14·1 answer
  • When you look at your speedometer and it reads 60 mph this is your instantaneous speed
    11·1 answer
  • Where does the energy released in a nuclear decay reaction come from
    6·1 answer
  • A solar eclipse occurs when the A solar eclipse occurs when the the moon's shadow touches Earth. moon passes into the Earth's sh
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!