Answer: kinetic energy
Explanation: Kinetic energy has motion which is a moving object
Answer:
Motors are the most common application of magnetic force on current-carrying wires. Motors have loops of wire in a magnetic field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft. Electrical energy is converted to mechanical work in the process
Explanation:
hope that helps!
Let the angle be Θ (theta)
Let the mass of the crate be m.
a) When the crate just begins to slip. At that moment the net force will be equal to zero and the static friction will be at the maximum vale.
Normal force (N) = mg CosΘ
μ (coefficient of static friction) = 0.29
Static friction = μN = μmg CosΘ
Now, along the ramp, the equation of net force will be:
mg SinΘ - μmg CosΘ = 0
mg SinΘ = μmg CosΘ
tan Θ = μ
tan Θ = 0.29
Θ = 16.17°
b) Let the acceleration be a.
Coefficient of kinetic friction = μ = 0.26
Now, the equation of net force will be:
mg sinΘ - μ mg CosΘ = ma
a = g SinΘ - μg CosΘ
Plugging the values
a = 9.8 × 0.278 - 0.26 × 9.8 × 0.96
a = 2.7244 - 2.44608
a = 0.278 m/s^2
Hence, the acceleration is 0.278 m/s^2
Answer:
A) Φ = 0
, B) T = 7.76 s
Explanation:
A) to find the value of the phase constant replace the value
0 = a sin (b (0- 0) + Φ)
0 = sin Φ
Φ = sin⁻¹ 0
Φ = 0
B) the period is defined by time or when the movement begins to repeat itself
So that the sine function is repeated when the angle passes 2pi
b (x- ct) = 2pi
If we are at a fixed point x = 0
b c t = 2pi
t = 2π / bc
Let's calculate
T = 2π / (33.05 245)
T = 7.76 s