Answer:
3.39724 seconds
23.0824792352 m, 101.917520765 m
13.58896 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
The equation of motion will be


The time at which the cars collide is 3.39724 seconds

Car B traveled 23.0824792352 m and Car A traveled 125-23.0824792352 = 101.917520765 m

The speed of car B is 13.58896 m/s
Answer:
23.49m
Explanation:
Distance = velocity x time
8.7 x 2.7 = 23.49m
Here we can use momentum conservation as there is no external force on sled and child while he jump on sled
by momentum conservation equation


since sled and child both moves with same speed so here they both will have same final speed "v"
by solving above equation we will have
25 v = 80
v = 3.2 m/s
So they will move together with speed 3.2 m/s
Answer:
upper part of any wave.
Explanation:
we normally define wave motion in term of movement of particles. compressions and rarefaction. rarefaction particles apart , and same as trough ( part of wave above mean line ).
Answer:
The rate at which bus 1 is going is 55 mph
The rate at which bus 1 is going is 35 mph
Explanation:
As per the question:
Suppose, the distance traveled by Bus 1 be 'd' at the rate R after a time, t = 3h
Thus
Suppose, the distance traveled by Bus 1 be 'd'' at the rate, R'20 mph slower than the rate of Bus 1 after the same time.
R' = R - 20
The distance is given as the product of rate and time:
d = Rt (1)
Now, the total distance given is 270 miles:
d + d' = 270
Now, using eqn (1):
Rt + R't = 270
3(R + R - 20) = 270
6R = 270 + 60
R = 55 mph
R' = R - 20 = 55 - 20 = 35 mph