<span>0.13 miles are equal to 209 meters or 228.8 yards and the human walking speed is about 3.1 miles per hour, with all those calculations we can say that every 0.05 miles would take an average person about 1 minute, and if we add 0.10 + 0.03 it would be about 4-5 minutes to travel that short distance.</span>
The variation of entropy of a substance is given by

(1)
where

is the heat exchanged in the process
T is the absolute temperature at which the transformation occurs.
The process in the problem is the solidification of the liquid Gallium, which releases an amount of heat equal to:

where m is the mass of the substance and

is the latent heat of fusion of Gallium. Using m=64.0 g, we find

where the negative sign means the Gallium is releasing heat to the environment.
Now we can use equation (1) to find the variation of entropy, but first we need to convert the temperature into Kelvin:

And so the variation of entropy is

and the negative sign means the entropy in the process is decreasing.
Answer:
Acceleration: 
Explanation:
The acceleration of an object is equal to the rate of change of velocity:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
For the space probe in this problem, we have:
u = 100 ft/s (initial velocity)
v = 5000 ft/s (final velocity)
t = 0.5 s (time taken)
Therefore, the acceleration is

Answer:
1.) answer B
2.) answer D
3.) answer A
Explanation:
In all of these problems, it is essential to draw pictures in order to understand which trigonometric function to use according to the angle that the vector in question forms with the component requested. For all of them try to picture a right angle triangle with the vector as the hypotenuse, and the components as the triangle's shorter sides. Please refer to the three pictures attached as image for this answer a,d notice that the vector quantity known for all cases is represented in red, and the component to find is represented in green.
Problem 1) : the vector velocity makes an angle of 24 degrees with the edge of the table. So picture that vector as the hypotenuse of a right angle triangle for which you know the value: 1.8 m/s
So in this case, where you know the angle, the hypotenuse, and need to find the adjacent side to the angle, you use the cosine function as follows:
requested component 
which we round to 1.6 to match answer C).
For problem 2.) wee need to find the component opposite to the given angle in the triangle for which we also know the hypotenuse. So we use the sine function as follows:
requested component 
which we round to 135.9 m to match answer D).
For problem 3.) we need to find the horizontal component to the acceleration which corresponds to the adjacent side to the known angle, so we use the cosine function as follows:
requested component 
which we round tp 7.7 to match answer A).