Answer:1.) Mars
2.) Venus
3.)Craters
4.)Mercury
5.)Venus
6.)Another planet (hypothesis)
7.) Iron oxide
Explanation:
Answer:when the two points get added.
Explanation:
Answer:
radial acceleration is 41.8 m / s²
Explanation:
The acceleration for circular motion is
a = v² / r
They also give us the X and Y position where the body falls when the rope breaks, let's write the projectile launch equations
x = vox t
y = v₀ₓ t - ½ g t2
Since the circle is horizontally the v₀ₓ is zero (v₀ₓ = 0)
x = v₀ₓ t
t = x / v₀ₓ
y = - ½ g t²
Let's replace and calculate the initial velocity on the X axis
y = - ½ g (x / vox)²
v₀ₓ = √ (g x² / 2 y)
v₀ₓ = √ [- (-9.8) 1.6² / (2 1.00)]
v₀ₓ = 3.54 m / s
This is the horizontal velocity, but since it circle is in horizontal position it is also the velocity of the body at the point of rupture.
Now we can calculate the radial acceleration
a = v² / r
a = 3.54² / 0.300
a = 41.8 m / s²
Answer:
Distance covered to top of the hill was : 1.755 km
Explanation:
Initial velocity = 35 km/hr
Acceleration = 2.0 km/hr²
Time taken to accelerate = 3 minutes = 3/60 hours = 1/20 hours
Formula for acceleration : a = Δv /t
v-u/t ---where u is initial velocity , v is final velocity and t is time taken for acceleration
v- 35 / 0.05 = 2
v = 35.10 km/h
Formula for distance is product of speed and time
Distance covered = 35.10 * 0.05 = 1.755 km
Answer:
D I think I might be wrong its been a while scense I did something like that