The direction of spontaneous heat flow in a system is described by the second law of thermodynamics, which describes that the direction of spontaneous heat flow is from a region of higher heat energy to a region of lower heat energy.
Multiple statements of this law are available, such as the one presented by Carnot or the one presented by Clausius and Planck.
The period is simply the inverse of the frequency, therefore:
T = 1 / f
T = 1 / 775 Hz
T = 0.001290 s → possible answer
T = 1.29 × 10⁻³ s → possible answer
T = 1.29 ms → possible answer
The total power delivered by the battery if the lightbulbs are connected is 9V^2/R
<h3>Power of a battery</h3>
The formula for calculating the power of a battery is expressed according to the equation;
Power = v^2/RT
where
R is the total resistance
v is the voltage or emf
If there are 3 identical lightbulbs, each having constant resistance R, then;
1/RT = 1/R + 1/R + 1/R
1/RT = 3/R
RT = R/3
The voltage drop across each lightbulbs will be the same for parallel connection, hence;
Power = 3V^2/(R/3)
Power = 9V^2/R
Hence the total power delivered by the battery if the lightbulbs are connected is 9V^2/R
Learn more on power here: brainly.com/question/24858512
#SPJ4