<span>When the electron in a hydrogen atom transitions from a high energy state to a lower energy state, the energy lost from the electron is used to produce a photon corresponding to the loss of energy. That photon will correspond to exactly 1 wavelength. And since a hydrogen atom has only 1 electron, at any given moment, it can only produce 1 photon. And in order to simultaneously produce 4 photons for 4 spectral lines, that would require a simultaneous transition of 4 electrons which is 3 too many for a hydrogen atom.</span>
Answer:
Gravitational potential energy
Explanation:
it is
Answer:
rate of recrystallization = 4.99 × 10⁻³ min⁻¹
Explanation:
For Avrami equation:

To calculate the value of k which is a dependent variable for the above equation ; we have:


The time needed for 50% transformation can be determined as follows:
![y = 1-e ^{(-kt^n)} \\ \\ e^{(-kt^n)} = 1-y\\ \\ -kt^n = In(1-y) \\ \\ t =[ \dfrac{-In(1-y)}{k}]^{^{1/n}}](https://tex.z-dn.net/?f=y%20%3D%201-e%20%5E%7B%28-kt%5En%29%7D%20%5C%5C%20%5C%5C%20e%5E%7B%28-kt%5En%29%7D%20%3D%201-y%5C%5C%20%5C%5C%20-kt%5En%20%3D%20In%281-y%29%20%5C%5C%20%5C%5C%20t%20%3D%5B%20%5Cdfrac%7B-In%281-y%29%7D%7Bk%7D%5D%5E%7B%5E%7B1%2Fn%7D%7D)
![t_{0.5} =[ \dfrac{-In(1-0.4)}{9.030 \times 10^{-7}}]^{^{1/2.5}}](https://tex.z-dn.net/?f=t_%7B0.5%7D%20%3D%5B%20%5Cdfrac%7B-In%281-0.4%29%7D%7B9.030%20%5Ctimes%2010%5E%7B-7%7D%7D%5D%5E%7B%5E%7B1%2F2.5%7D%7D)
= 200.00183 min
The rate of reaction for Avrami equation is:


rate = 0.00499 / min
rate of recrystallization = 4.99 × 10⁻³ min⁻¹
I believe it was Hiroshima. Followed by Nagasaki. Moscow was never bombed in my knowledge, and Auschwitz was a death camp, so it wasn't bombed.
It’s
1.A
2.C
3.B
hope it’s correct