Because melting point<span> and </span>freezing point<span> describe the</span>same<span> transition of matter, in this case from liquid to solid (</span>freezing) or equivalently, from solid to liquid (melting<span>).</span>
False:Laws are theories that have not been proven false.
Answer:
The Answer is B because the material the object is made of, the position, or the color have absolutely nothing to do with gravitational potential energy
Explanation:
It is given that,
Area of nickel wire, 
Resistance of the wire, R = 2.4 ohms
Initial value of magnetic field, 
Final magnetic field, 
Time, t = 1.12 s
Let I is the induced current in the loop of wire over this time. Te emf induced in the wire is given by Faraday's law as :






Induced current in the loop of wire is given by :



So, the induced current in the loop of wire over this time is
. Hence, this is the required solution.
Answer:
11.07Hz
Explanation:
Check the attachment for diagram of the standing wave in question.
Formula for calculating the fundamental frequency Fo in strings is V/2L where;
V is the velocity of the wave in string
L is the length of the string which is expressed as a function of its wavelength.
The wavelength of the string given is 1.5λ(one loop is equivalent to 0.5 wavelength)
Therefore L = 1.5λ
If L = 3.0m
1.5λ = 3.0m
λ = 3/1.5
λ = 2m
Also;
V = √T/m where;
T is the tension = 0.98N
m is the mass per unit length = 2.0g = 0.002kg
V = √0.98/0.002
V = √490
V = 22.14m/s
Fo = V/2L (for string)
Fo = 22.14/2(3)
Fo = 22.14/6
Fo = 3.69Hz
Harmonics are multiple integrals of the fundamental frequency. The string in question resonates in 2nd harmonics F2 = 3Fo
Frequency of the wave = 3×3.69
Frequency of the wave = 11.07Hz