Answer: 3.75 joules
Explanation:
Given that:
Mass of acorn = 0.300 kilograms
velocity = 5.oo m/s
Kinetic energy = ?
Since, kinetic energy is the energy possessed by a moving object, its value depends on the mass M and velocity V of the acorn.
Thus, Kinetic energy = 1/2 x mv^2
= 1/2 x 0.300kg x (5.00m/s)^2
= 0.5 x 0.3kg x (5.00m/s)^2
= 0.15 x (5.00m/s)^2
= 3.75 joules
Thus, the kinetic energy of the falling acorn is 3.75 joules
Answer:
r = 3.787 10¹¹ m
Explanation:
We can solve this exercise using Newton's second law, where force is the force of universal attraction and centripetal acceleration
F = ma
G m M / r² = m a
The centripetal acceleration is given by
a = v² / r
For the case of an orbit the speed circulates (velocity module is constant), let's use the relationship
v = d / t
The distance traveled Esla orbits, in a circle the distance is
d = 2 π r
Time in time to complete the orbit, called period
v = 2π r / T
Let's replace
G m M / r² = m a
G M / r² = (2π r / T)² / r
G M / r² = 4π² r / T²
G M T² = 4π² r3
r = ∛ (G M T² / 4π²)
Let's reduce the magnitudes to the SI system
T = 3.27 and (365 d / 1 y) (24 h / 1 day) (3600s / 1h)
T = 1.03 10⁸ s
Let's calculate
r = ∛[6.67 10⁻¹¹ 3.03 10³⁰ (1.03 10⁸) 2) / 4π²2]
r = ∛ (21.44 10³⁵ / 39.478)
r = ∛(0.0543087 10 36)
r = 0.3787 10¹² m
r = 3.787 10¹¹ m
Answer:
number 6 is wrong
the answer is pesticides
2.combines are used for harvesting or threshing.so number <em>2</em><em> </em><em>is</em><em> </em><em>w</em><em>rong</em>
at least you tried
Explanation:
there is no such thing as <em>weedicides</em>
Answer:
B. using numerical superscripts
Explanation:
ion is an atom that has different number of protons and electrons. An isotope is an atom of an element with a specific number of neutrons. Two different isotopes of the same element will have two different neutron counts.
When writing the symbol for an ion, the one- or two-letter element symbol is written first, followed by a superscript. The superscript has the number of charges on the ion followed by a + (for positive ions or cations) or - (for negative ions or anions). Neutral atoms have a charge of zero, so no superscript is given.
Answer:
The height reached by the material on Earth is 91 km.
Explanation:
Given that,
Mass 
Radius = 1821 km
Height 
Suppose we need to find that how high would this material go on earth if it were ejected with the same speed as on Io?
We need to calculate the acceleration due to gravity on Io
Using formula of gravity

Put the value into the formula


Let v be the speed at which the material is ejected.
We need to calculate the height
Using the formula of height

Using ratio of height of earth and height of Io


Put the value into the formula





Hence, The height reached by the material on Earth is 91 km.