Answer is c photosynthesis
Answer:

Explanation:
Hello there!
In this case, given the Henderson-Hasselbach equation, it is possible for us to compute the pH by firstly computing the concentration of the acid and the conjugate base; for this purpose we assume that the volume of the total solution is 0.025 L and the molar mass of the sodium base is 234 - 1 + 23 = 256 g/mol as one H is replaced by the Na:

And the concentrations are:
![[acid]=0.000855mol/0.025L=0.0342M](https://tex.z-dn.net/?f=%5Bacid%5D%3D0.000855mol%2F0.025L%3D0.0342M)
![[base]=0.000781mol/0.025L=0.0312M](https://tex.z-dn.net/?f=%5Bbase%5D%3D0.000781mol%2F0.025L%3D0.0312M)
Then, considering that the Ka of this acid is 2.5x10⁻⁵, we obtain for the pH:

Best regards!
ClBr, two nonmetals
Hope this helps you
Answer:
a) Graph
b) Weight balance or gas syringe or upside-down measuring cylinder
Explanation:
a) Identifying a trend in temperature change over time - The best tool for this scenario is to represents the temperature daily, weekly, monthly or annually on graph to interpret the fluctuation in temperature owing to local seasonal changes and weather conditions
b) Measuring the mass of a product of a chemical reaction - If the product is solid or liquid then the balance is used to measure the mass. If the product is a gas, then gas syringe or upside-down measuring cylinder is used.