Answer:
<h2>2.54 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>2.54 moles</h3>
Hope this helps you
Answer:
x=2.8moles
Explanation:
first step balance the chemical equation
C2H6+O2-->CO2+2H2O
use more ratio to find the moles of water
1mole of C2H6= 2 moles of H2O
1.4mole of C2H6=?x
cross multiply
x=2.8 moles of H2O
This is thermal conduction.
In conduction area with higher kinetic energy (in this case how water) transfer thermal energy to an area with lower kinetic energy (in this case frozen vegetables). Thermal c<span>onduction takes place in all phases of </span>matter (solids, liquids, gases). Rate of conduction is proportional with <span>temperature difference between substances.</span>
Answer:
50 ltr 150 ltr
Explanation:
this problem can be solved by the mixture and allegation concept which can be clearly understand from bellow figure in which the concentration of solution 1 is 50% and concentration of solution 2 is 90% before mixing after mixing with help bellow concept the ratio of concentration become 10:30
ratio of solution 1 and solution 2 =10:30
=1:3
total mixture is 200 liters
part of solution 1=
×200
=50 liters
part of solution 2=
×200
=150 liters
Answer : The mass defect required to release energy is 6111.111 kg
Explanation :
To calculate the mass defect for given energy released, we use Einstein's equation:

E = Energy released = 
= mass change = ?
c = speed of light = 
Now put all the given values in above equation, we get:


Therefore, the mass defect required to release energy is 6111.111 kg