1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STALIN [3.7K]
1 year ago
9

When you apply for your driver license, you consent to take a ____ test when asked to do so by a law enforcement officer. memory

constitution blood alcohol driving test submit answer
Engineering
1 answer:
n200080 [17]1 year ago
4 0

Answer:

Driving test

Explanation:

Usually according to laws in countries worldwide, to be licenced to drive, one is required to go through a driving school to learn the ethics and rules of driving.

You might be interested in
Car B is traveling a distance dd ahead of car A. Both cars are traveling at 60 ft/s when the driver of B suddenly applies the br
vagabundo [1.1K]

Answer:

Explanation:

Using the kinematics equation v = v_o + a_ct to determine the velocity of car B.

where;

v_o = initial velocity

a_c = constant deceleration

Assuming the constant deceleration is = -12 ft/s^2

Also, the kinematic equation that relates to the distance with the time is:

S = d + v_ot + \dfrac{1}{2}at^2

Then:

v_B = 60-12t

The distance traveled by car B in the given time (t) is expressed as:

S_B = d + 60 t - \dfrac{1}{2}(12t^2)

For car A, the needed time (t) to come to rest is:

v_A = 60 - 18(t-0.75)

Also, the distance traveled by car A in the given time (t) is expressed as:

S_A = 60  * 0.75 +60(t-0.75) -\dfrac{1}{2}*18*(t-0.750)^2

Relating both velocities:

v_B = v_A

60-12t = 60 - 18(t-0.75)

60-12t =73.5 - 18t

60- 73.5 = - 18t+ 12t

-13.5 =-6t

t = 2.25 s

At t = 2.25s, the required minimum distance can be estimated by equating both distances traveled by both cars

i.e.

S_B = S_A

d + 60 t - \dfrac{1}{2}(12t^2) = 60  * 0.75 +60(t-0.75) -\dfrac{1}{2}*18*(t-0.750)^2

d + 60 (2.25) - \dfrac{1}{2}(12*(2.25)^2) = 60  * 0.75 +60((2.25)-0.75) -\dfrac{1}{2}*18*((2.25)-0.750)^2

d + 104.625 = 114.75

d = 114.75 - 104.625

d = 10.125 ft

3 0
3 years ago
Disadvantage of metal
ivolga24 [154]
You can get hurt if u don’t use it properly.
7 0
3 years ago
zener shunt regulator employs a 9.1-V zener diode for which VZ = 9.1 V at IZ = 9 mA, with rz = 40 and IZK= 0.5 mA. The available
gulaghasi [49]

Answer:

V_z=9.1v

V_{zo}=8.74V

I=10mA

R=589 ohms

Explanation:

From the question we are told that:

Zener diode Voltage V_z=9.1-V

Zener diode Current I_z=9 .A

Note

rz = 40\\\\IZK= 0.5 mA

Supply Voltage V_s=15

Reduction Percentage P_r= 50 \%

Generally the equation for Kirchhoff's Voltage Law is mathematically given by

V_z=V_{zo}+I_zr_z

9.1=V_{z0}+9*10^{-3}(40)

V_{zo}=8.74V

Therefore

At I_z-10mA

V_z=V_{z0}+I_zr_z

V_z=8.74+(10*10^{-3}) (40)

V_z=9.1v

Generally the equation for Kirchhoff's Current Law is mathematically given by

-I+I_z+I_l=0

I=10mA+\frac{V_z}{R_l}

I=10mA+\frac{9.1}{0}

I=10mA

Therefore

R=\frac{15V-V_z}{I}

R=\frac{15-9.1}{10*10^{-3}}

R=589 ohms

5 0
3 years ago
A pump operating at steady state receives liquid water at 20°C, 100 kPa with a mass flow rate of 53 kg/min. The pressure of the
VARVARA [1.3K]

Answer:

Input Power = 6.341 KW

Explanation:

First, we need to calculate enthalpy of the water at inlet and exit state.

At inlet, water is at 20° C and 100 KPa. Under these conditions from saturated water table:

Since the water is in compresses liquid state and the data is not available in compressed liquid chart. Therefore, we use approximation:

h₁ = hf at 20° C = 83.915 KJ/kg

s₁ = sf at 20° C = 0.2965 KJ/kg.k

At the exit state,

P₂ = 5 M Pa

s₂ = s₁ = 0.2965 K J / kg.k    (Isentropic Process)

Since Sg at 5 M Pa is greater than s₂. Therefore, water is in compresses liquid state. Therefore, from compressed liquid property table:

h₂ = 88.94 KJ/kg

Now, the total work done by the pump can be calculated as:

Pump Work = W = (Mass Flow Rate)(h₂ - h₁)

W = (53 kg/min)(1 min/60 sec)(88.94 KJ/kg - 83.915 KJ/kg)

W = 4.438 KW

The efficiency of pump is given as:

efficiency = η = Pump Work/Input Power

Input Power = W/η

Input Power = 4.438 KW/0.7

<u>Input Power = 6.341 KW</u>

5 0
3 years ago
9. A box contains (4) red balls, and (7) white balls ,we draw( two) balls with return , find 1. Show the sample space &amp; n(s)
zzz [600]

Answer:

The answers to your questions are given below.

Explanation:

The following data were obtained from the question:

Red (R) = 4

White (W) = 7

1. Determination of the sample space, S.

The box contains 4 red balls and 7 white balls. Therefore, the sample space (S) can be written as follow:

S = {R, R, R, R, W, W, W, W, W, W, W}

nS = 11

2. Determination of the probability of all results that appeared in the sample space.

From the question, we were told that the two balls was drawn with return. There, the probability of all results that appeared in the sample space can be given as follow:

i. Probability that the first draw is red and the second is also red.

P(R1) = nR/nS

Red (R) = 4

Space space (S) = 11

P(R1) = nR/nS

P(R1) = 4/11

P(R2) = nR/nS

P(R2) = 4/11

P(R1R2) = P(R1) x P(R2)

P(R1R2) = 4/11 x 4/11

P(R1R2) = 16/121

Therefore, the Probability that the first draw is red and the second is also red is 16/121.

ii. Probability that the first draw is red and the second is white.

Red (R) = 4

White (W) = 7

Space space (S) = 11

P(R) = nR/nS

P(R) = 4/11

P(W) = nW/nS

P(W) = 7/11

P(RW) = P(R) x P(W)

P(RW) = 4/11 x 7/11

P(RW) = 28/121

Therefore, the probability that the first draw is red and the second is white is 28/121.

iii. Probability that the first draw is white and the second is also white.

White (W) = 7

Space space (S) = 11

P(W1) = nW/nS

P(W1) = 7/11

P(W2) = nW/n/S

P(W2) = 7/11

P(W1W2) = P(W1) x P(W2)

P(W1W2) = 7/11 x 7/11

P(W1W2) = 49/121

Therefore, the probability that the first draw is white and the second is also white is 49/121.

iv. Probability that the first draw is white and the second is red.

Red (R) = 4

White (W) = 7

Space space (S) = 11

P(W) = nW/nS

P(W) = 7/11

P(R) = nR/nS

P(R) = 4/11

P(WR) = P(W) x P(R)

P(WR) = 7/11 x 4/11

P(WR) = 28/121

Therefore, the probability that the first draw is white and the second is red is 28/121.

7 0
3 years ago
Other questions:
  • In a production turning operation, the foreman has decreed that a single pass must be completed on the cylindrical workpiece in
    7·1 answer
  • This manometer is used to measure the difference in water level between the two tanks.
    10·1 answer
  • For methyl chloride at 100°C the second and third virial coefficients are: B = −242.5 cm 3 ·mol −1 C = 25,200 cm 6 ·mol −2 Calcu
    7·1 answer
  • Who is the mystical body of Christ
    6·2 answers
  • Determine the magnitude and the location of the hydrostatic force on the 2m by 4 m vertical rectangular gate shown in Figure P3.
    12·1 answer
  • A heating system must maintain the interior of a building at TH = 20 °C when the outside temperature is TC = 2 °C. If the rate o
    10·1 answer
  • Which term represents an object that has a round or oval base and is connected at every point by lines at a corresponding point
    11·2 answers
  • a buyer can purchase 70 screwdrivers ten 4-inch length twelve 6 inch length twenty 8-inch length are needed. how many heavy 24-i
    6·1 answer
  • List all the qualities of an engineer?
    8·1 answer
  • Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!