Answer:
34g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
H2S + 2AgNO3 —> 2HNO3 + Ag2S
Next, we shall determine the number of mole of H2S required to react with 2 moles of AgNO3.
This is illustrated below:
From the balanced equation above,
We can see that 1 mole of H2S is required to react completely with 2 moles of AgNO3.
Finally, we shall convert 1 mole of H2S to grams. This is shown below:
Number of mole H2S = 1 mole
Molar mass of H2S = (2x1) + 32 = 34g/mol
Mass = number of mole x molar Mass
Mass of H2S = 1 x 34
Mass of H2S = 34g
Therefore, 34g of H2S is needed to react with 2 moles of AgNO3.
Explanation:
The basis for classifying changes in matter into physical and chemical change is to see if a material is altered after going through a process.
In a physical change only the state of matter is usually altered especially its form or shape.
Chemical change alters a substance by producing new kinds that are totally different from it.
- In a chemical change, new kinds of matter are usually formed.
- Such changes are usually irreversible.
- Change of state is a reversible process.
learn more:
Chemical change brainly.com/question/9388643
#learnwithBrainly
Answer:
The correct statement should be The energies of electron are <em>quantized</em> when <em>they are bounded to an atom.</em>
In Quantum Mechanics The term Quantization used to measure the physical entities having certain discrete value. When we say energies of electron are <em>quantized</em> <em>that means it have some specific values</em> that are allowed, that is not continuous range of values.
<em><u>Thanks for joining brainly community! </u></em>
From the coefficients of the equation, we know that for every 3 moles of water consumed, 1 mole of diphosphorus trioxide is consumed.
This means we need to find the mass of 0.75 moles of diphosphorus trioxide.
- The atomic mass of phosphorous is 30.973761998 g/mol.
- The atomic mass of oxygen is 15.9994 g/mol.
So, the formula mass of diphosphorus trioxide is:
- 2(30.973761998)+3(15.9994)=109.945723996 g/mol.
Thus, 0.75 moles have a mass of:
- 0.75(109.945723996), which is about 82.5 g (to 3 sf)
The answer is going to be Rubidium. hope that helped