Iconic +covalent is the answer to this
Answer:
SO₃(g) + H₂O(l) → H₂SO₄(aq)
Explanation:
The<em> molecular formula for the involved species</em> are:
- Sulfur trioxide = SO₃. ("trioxide" indicates the presence of 3 oxygen atoms).
With the above information in mind we can proceed to write the reaction equation:
- SO₃(g) + H₂O(l) → H₂SO₄(aq)
Answer:
= 29.64 g NaNO3
Explanation:
Molarity is given by the formula;
Molarity = Moles/Volume in liters
Therefore;
Number of moles = Molarity × Volume in liters
= 1.55 M × 0.225 L
= 0.34875 moles NaNO3
Thus; 0.34875 moles of NaNO3 is needed equivalent to;
= 0.34875 moles × 84.99 g/mol
= 29.64 g
Basically since there’s 2 hydrogen’s there will be two H’s on either side of your other element. And Se is in group 6 which means it has 6 valence electrons. When you combine 6 and 2 from the hydrogen you get 8. You then should place 8 dots around Se two on each side.
So something like H Se(with 8 dogs around it) H
Answer:
See notes on LeChatlier's Principle I gave you yesterday.
Explanation:
Remember chemical see-saw => Removing Fe⁺³ makes the reactant side of the see-saw lighter causing the balance to tilt right then shift left to establish a new equilibrium with new concentration values. Such would result in a decrease in FeSCN⁺² concentration and increases in Fe⁺³ and SCN⁻ concentrations to replace the original amount of ppt'd Fe⁺³. => Answer Choice 'B' ... Also, see attached => Concentration effects on stability of chemical equilibrium .