Complete question is;
Identify the type of reaction in the chemical reaction below:
2P205 ➡️ 4P + 502
single replacement
synthesis
decomposition
combustion
double replacement
Answer:
Decomposition
Explanation:
We. An see in the question that the compound 2P205 is broken down into simpler substances which are phosphorus (P) and oxygen (O).
Now, this is a decomposition reaction because a decomposition reaction is one in which a compound is broken down into simpler substances
Grams of Ca(NO₃)₂ produced : 0.985 g
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction
CaCl₂ + 2AgNO₃ → 2AgCl + Ca(NO₃)₂
MW AgNO₃ : 107.9+14+3.16=169.9
mol AgNO₃ :
mol ratio Ca(NO₃)₂ : AgNO₃ = 1 : 2, so mol Ca(NO₃)₂ :
MW Ca(NO₃)₂ : 40.1+2.14+6.16=164.1 g/mol
mass Ca(NO₃)₂ :
Capillary action is the ability of a liquid to flow in narrow spaces without the assistance of, or even in opposition to, external forces like gravity.
Answer : The correct option is, (c) pyramidal
Explanation :
As we are given that a molecule in which the central atom forms three single bonds and has one lone pair that means the central metal atom has 3 bond pairs and 1 lone pair of electrons.
There are total 4 electron pairs. So, the hybridization will be and the electronic geometry of the molecule will be tetrahedral.
But as there are three atoms or bonds around the central atom and the fourth position occupied by lone pair of electrons. The repulsion between lone and bond pair of electrons is more and hence the molecular geometry will be pyramidal.
Hence, correct option is, (c) pyramidal
Answer:
VP (solution) = 171.56 mmHg
Explanation:
Vapor pressure of pure solvent(P°) - Vapor pressure of solution (P') = P° . Xm
Let's replace the data:
173.11 mmHg - P' = 173.11 mmHg . Xm
Let's determine the Xm (mole fraction for solute)
Mole fraction for solute = Moles of solute / Total moles
Total moles = Moles of solute + moles of solvent.
Let's determine the moles
Moles of solvent → 623.4 g / 119.4 g/mol = 5.22 moles
Moles of solute → 9.322 g / 180.1 g/mol = 0.052 moles
Total moles = 0.052 + 5.22 = 5.272 moles
Xm = 0.052 moles / 5.272 moles = 0.009 → 9/1000
173.11 mmHg - P' = 173.11 mmHg . 9/1000
P' = - (173.11 mmHg . 9/1000 - 173.11 mmHg)
P' = 171.56 mmHg