<span>Because you've added coefficients to the molecules on the right side of the equation, the number of oxygen atoms has changed.</span>
This is more to do with Bioaccumulation of mercury, where the mercury is absorbed into the issue of animals, and so animals higher in the food chain consume a lot of tissue matter hence increasing mercury content in their system.
POH=14-pH=14-2.5=11.5
pH=-log[H+]
2.5=-log [H+]
[H+]=10^-5/2
[OH-]=10^(14-5/2)=10^23/2
Answer:

Explanation:
Hello.
In this case, since this is a system in which the water is heated up and the metal is cooled down in a calorimeter which is not affected by the heat lose-gain process, we can infer that the heat lost by the metal is gained be water, it means that we can write:

Thus, in terms of masses, specific heats and temperatures we can write:

Whereas the equilibrium temperature is the given final temperature of 28.4 °C and we can compute the specific heat of the metal as shown below:

Plugging the values in and since the density of water is 1.00 g/mL so the mass is 80.0g, we obtain:

Best regards!