Answer:
This question is incomplete
Explanation:
This question is incomplete because of the absence of the time taken to complete one full cycle.
Frequency (<em>f</em>) will be calculated first as
<em>f </em>= <em>N </em>÷<em> t</em>
where <em>N </em>is the number of cycles and <em>t </em>is the time taken to complete one full cycle. The unit for frequency is Hertz (Hz).
To calculate the period, <em>T, </em>the formula below will be used
<em>T </em>= 1 ÷ <em>f</em>
The unit for period is secs
Answer:
a) 0.658 seconds
b) 0.96 inches
Explanation:

Time taken by the ball to reach the highest point is 0.14 seconds

The highest point reached by the snowball above its release point is 0.315 ft
Total height the snowball will fall is 4+0.315 = 4.315 ft

The snowball will reach the bank at 0.14+0.518 = 0.658 seconds after it has been thrown


The snowball goes 0.5-0.42 = 0.08 ft = 0.96 inches
Answer:
0.20 A
Explanation:
The current in the wire is given by Ohm's law:

where
I is the current
V is the voltage
R is the resistance
In this problem,
V = 3.0 V is the voltage
is the resistance
Substituting into the formula,

To solve this we are going to use the formula for ideal mechanical advantage:

where

is the machine mechanical advantage

is the input distance

is the output distance
We know for our problem that

and

. Lets replace those values in our formula to find

:



The ideal machine advantage of the machine is 3. The inventor is claiming that the actual mechanical advantage of the machine is 4. Since the actual mechanical advantage takes into account energy losses, it is always less than the ideal mechanical advantage.
We can conclude that the developer's claim is false.
Should be the force of you pushing the chair, gravity, friction, and air resistance