Here we know that



now from kinematics we have

now from above all values we have



so final angular speed is -12.6 rad/s
Velocity - <span><span>the speed of something in a given direction
Speed - </span></span><span>rapidity in moving, going, traveling, proceeding, or performing; swiftness; <span>celerity
Velocity is the speed in a certain direction, whereas speed is just the rate of fastness.
Does that make sense?
</span></span>
As we use the Kinetic energy and the equation is 1/2mv^2, changing its mass will change its speed and its energy. So more mass, more speed more energy. also the gravitational potential energy; mass x gravity x height; more mass and more height more speed as it go down to the slope! Hope it helps!
The gravitational constant was experimentally measured by W Cavendish using the attraction between big and small lead balls. is true
The correct answer is true
<h3>How do you define gravitational constant?</h3>
the strength of gravity. a factor in use in Newton's gravity law to relate the strength of the gravitational pull between two bodies with their masses and distance from one another. 6.67259 X 10-11 newtons per square kilogram is roughly the gravitational constant. G is its identifier.
<h3> where is the strongest gravity is?</h3>
The gravitational pull of the earth is greatest near sea level, normally, and weakens as you get further from the center, such as to the summit of Mt. Everest. Because the obloid earth was slightly wider, but only by a minor ratio, the gravity just at poles is stronger than that at the equator.
To know more about gravitational constant visit:
brainly.com/question/858421
#SPJ9
Thw question is not complete. The complete question is;
Charge of uniform linear density (6.7 nCim) is distributed along the entire x axis. Determine the magnitude of the electric field on the y axis at y = 1.6 m. a. 32 N/C b. 150 NC c 75 N/C d. 49 N/C e. 63 NC
Answer:
Option C: E = 75 N/C
Explanation:
We are given;
Uniform linear density; λ = 6.7 nC/m = 6.7 × 10^(-9) C/m
Distance on the y-axis; d = 1.6 m
Now, the formula for electric field with uniform linear density is given as;
E = λ/(2•π•r•ε_o)
Where;
E is electric field
λ is uniform linear density = 6.7 × 10^(-9) C/m
r is distance = 1.6m
ε_o is a constant = 8.85 × 10^(-12) C²/N.m²
Thus;
E = (6.7 × 10^(-9))/(2π × 1.6 × 8.85 × 10^(-12))
E = 75.31 N/C ≈ 75 N/C