Answer:
Chemical potential energy
Explanation:
which is used to for any form of energy.
Answer:
Diffusion requires energy only to move material through the cell membrane.
Explanation:
:)
Answer is B- 200 m
Given:
m (mass of the car) = 2000 Kg
F = -2000 N
u(initial velocity)= 20 m/s.
v(final velocity)= 0.
Now we know that
<u>F= ma</u>
Where F is the force exerted on the object
m is the mass of the object
a is the acceleration of the object
Substituting the given values
-2000 = 2000 × a
a = -1 m/s∧2
Consider the equation
<u>v=u +at</u>
where v is the initial velocity
u is the initial velocity
a is the acceleration
t is the time
0= 20 -t
t=20 secs
s = ut +1/2(at∧2)
where s is the displacement of the object
u is the initial velocity
t is the time
v is the final velocity
a is the acceleration
s= 20 ×20 +(-1×20×20)/2
<u>s= 200 m</u>
Answer:
Examples of man-made objects that spread an impulse over a large amount of time are "airbags" in vehicles and "arrestor beds" (for trucks).
Explanation:
The question above is highly related to the topic about "Impulse" in Physics.
"Impulse"<em> refers to an object's change in momentum (the amount of motion in an object) when a force acts upon it for an interval time.</em> When it comes to providing safety to people when it comes to vehicular crashes, impulse plays a vital role.
Let's take the example of airbags in vehicles. Once a vehicle collides with another object, the driver is carried by a forward motion. Without airbags, the time is normally shorter for the driver to be stopped by the windshield. This results to a greater force. However, with the presence of air-bags, the driver will hit the airbag, instead of the windshield. <u>This will lengthen the time of the impact, thus reducing the force.</u>
Another example are the arrestor beds for trucks. Arrestor beds have been designed in order for trucks to stop, since it's hard to maneuver them. <u>With the help of arrestor beds, trucks are able to come to a stop with a longer time interval, but decreased force.</u>
Answer:
1.57772 m
Explanation:
M = Mass of actor = 84.5 kg
m = Mass of costar = 55 kg
v = Velocity of costar
V = Velocity of actor
= Intial height of actor = 4.3 m
g = Acceleration due to gravity = 9.81 m/s²
As the energy of the system is conserved

As the linear momentum is conserved

Applying conservation of energy again

The maximum height they reach is 1.57772 m