Answer: The magnitude of the current in the second wire 2.67A
Explanation:
Here is the complete question:
Two straight parallel wires are separated by 7.0 cm. There is a 2.0-A current flowing in the first wire. If the magnetic field strength is found to be zero between the two wires at a distance of 3.0 cm from the first wire, what is the magnitude of the current in the second wire?
Explanation: Please see the attachments below
Answer:
Check the first and the third choices:
<u><em /></u>
- <u><em>a. The temperature of a gas is directly proportional to its volume</em></u>
- <u><em>b. The temperature-to-volume ratio of a gas is constant.</em></u>
Explanation:
Rewrite the table for better understanding:
Temperature of gas (K) Volume of gas (L)
298 4.55
315 4.81
325 4.96
335 ?
Calculate the ratios temperature to volume with 3 significant figures:
Then, those numbers show a <u><em>constant temperature-to-volume ratio</em></u>, which may be expressed in a formula as:
- Temperature / Volume = constant, which is a directly proportional variation (the volume increases in a constant proportion to the increase of the temperature).
Hence, the correct choices are:
- The temperature of a gas is directly proportional to its volume (first statement), and
- The emperature-to-volume ratio of a gas is constant (third statement).
First we have to calculate the time taken to travel the distance 30 m, is
.
Now from equation of motion,

Given,
.
As object starts from rest, so u = 0.
Substituting these values in above equation, we get
.
Thus, the acceleration is 
Answer:
230.26 N
Explanation:
Since the speed is constant, acceleration is zero hence the net force will be given by the product of mass, coefficient of friction and acceleration due to gravity
F=0.72*32.6*9.81=230.26 N