Answer:
<h2><u>Given </u><u>:</u><u>-</u></h2>
- Mass = 1025 kg
- Acceleration = 9.8 m/s²
<h2><u>To </u><u>Find</u><u> </u><u>:</u><u>-</u></h2>
Force
<h2><u>Solution</u><u> </u><u>:</u><u>-</u></h2>
We know that
F = mg
F = 1025 × 9.8
F = 10,045 N
Or,
10045/1000 = 10.045 Kilo Newton
<span>6.20 m/s^2
The rocket is being accelerated towards the earth by gravity which has a value of 9.8 m/s^2. Given the total mass of the rocket, the gravitational drag will be
9.8 m/s^2 * 5.00 x 10^5 kg = 4.9 x 10^6 kg m/s^2 = 4.9 x 10^6 N
Add in the atmospheric drag and you get
4.90 x 10^6 N + 4.50 x 10^6 N = 9.4 x 10^6 N
Now subtract that total drag from the thrust available.
1.250 x 10^7 - 9.4 x 10^6 = 12.50 x 10^6 - 9.4 x 10^6 = 3.10 x 10^6 N
So we have an effective thrust of 3.10 x 10^6 N working against a mass of 5.00 x 10^5 kg. We also have N which is (kg m)/s^2 and kg. The unit we wish to end up with is m/s^2 so that indicates we need to divide the thrust by the mass. So
3.10 x 10^6 (kg m)/s^2 / 5.00 x 10^5 kg = 0.62 x 10^1 m/s^2 = 6.2 m/s^2
Since we have only 3 significant figures in our data, the answer is 6.20 m/s^2</span>
The distance of the object from the lens is 3.12 cm.
<h3>What is magnification?</h3>
Magnification is the process of of enlarging an apparent size of an object.
<h3>Object distance</h3>
The object distance is calculated using the following lens formula;
where;
- M is the magnification
- V is the image distance
- U is object distance
Thus, the distance of the object from the lens is 3.12 cm.
Learn more about object distance here: brainly.com/question/24894435
Power = (voltage) x (current)
Power = (120) x (8) = 960 watts = <em>0.960 kilowatt</em>
Answer:
It is the tendency
of an object to resist any change in its state of motion .
Explanation:
if I am right mark my answer as brainliest