Hi There,
This is False.
Hope this helped!
The diameter of one leg of the stool is missing and it's 2cm.
Answer:
(ΔL/L) = 0.00729%
Explanation:
If the Weight of the man is W, the weight will be distributed equally on the 3 legs and so the reactions for each leg will be W/3 or F/3.
Now, Youngs modulus(Y) of douglas fir wood is about 1.3 x 10^(10) N/m^2. Gotten from youngs modulus of common materials.
Now, weight of man is 70kg.
Now diameter of one leg is 2cm.so radius of one leg = 2/2 = 1cm = 1 x 10^(-2)m
Area for one leg is; π( 1 x 10^(-2)m)^2 = 3.14 x 10^(-4)m
Now as stated earlier, the force on one leg is; F/3.
Now F = mg = 70 x 9.81 = 686.7N
So, force on one leg = 686.7/3 = 228. 9N
Now we know youngs modulus(Y) = Stress/Strain.
Stress = F/A while Strain = ΔL/L
Therefore Y = (F/A) / (ΔL/L)
And therefore, (ΔL/L) = F/(AY)
So (ΔL/L) = 228.9/(3.14 x 10^(-4))x(1.3 x 10^(10)) = 7. 29 x 10^(-5)
When expressed in percentage, it becomes 0.00729%
Answer:
Explanation:
A proton of charge
q=+1.609×10^-19C
Orbit a radius of 12cm
r=0.12m
Magnetic Field of 0.31T
Angle between velocity and field is 90°
a. Because the magnetic force F supplies the centripetal force Fc.
The magnitude of the magnetic force F on a charge q moving at a speed v in a magnetic field of strength B is given by
F = qvB sin θ
And the centripetal force is given as
Fc=mv²/r
Where m is mass of proton
m=1.673×10^-27kg
Then, F=Fc
qvB sin θ=mv²/r
qBSin90=mv/r
rqB=mv
Then, v=rqB/m
v=0.12×1.609×10^-19×0.31/1.673×10^-23
v=3577692.78m/s
v=3.58×10^6m/s
b. Since,
F=qVBSin90
F=1.609×10^-19×3.58×10^6×0.31
F=1.785×10^-13 N.
1. One
2. Oohm
Hope this helps
Answer:
Feathers are great thermal insulators.
Explanation:
Feathers are great thermal insulators. The loose structure of down feathers traps air.
As a result, energy cannot be transmitted easily through down feathers. This means birds are insulated from cold air outside, plus their body heat doesn't escape easily either.
Human beings discovered that down feathers are good for insulation long ago. For example, documents from the 1600s show that Russian merchants sold “bird down" to the Dutch hundreds of years ago.
Today, down is used in all sorts of products, including coats, bedding, and sleeping bags, to help better insulate the user from cold weather. Down can be collected from many different types of birds, but most of today's supply comes from domestic geese.
If you have a down coat or comforter, is it all down? In the United States, laws require that products labeled “100 percent down" contain only down feathers.
If your product is labeled “down," it can contain a mixture of both down feathers and synthetic fibers. Not all down feathers are created equal, though.
Down insulation is rated on a measure called “fill power." The higher the fill power, the more the down insulates.
The highest fill-power rating — 1200 — goes to eiderdown, which comes from the Common Eider duck. Eiderdown tends to be expensive.