Oxidation state of I is (-1) and for CO it is zero. Let's assume that the oxidation state of Fe in Fe(CO)₄I₂<span> (s) is x. For whole compound, the charge is zero.
Sum of oxidation numbers in all elements = Charge of the compound.
Here we have 1Fe , 4CO and 2I
hence we can find the oxidation state as;
x + 4*0 + 2*(-1) = 0
x + 0 - 2 = 0
x = +2
Hence the oxidation state of Fe in product </span>Fe(CO)₄I₂ (s) is +2.
Same as we can find the oxidation state (y) of Fe in Fe(CO)₅(s).
y + 5*0 = 0
y = 0
Since oxidation state of Fe increased from 0 to +2, the oxidized element is Fe in the given reaction.
Answer:
Carbon monoxide (CO)—a colorless, odorless, tasteless, and toxic air pollutant—is produced in the incomplete combustion of carbon-containing fuels, such as gasoline, natural gas, oil, coal, and wood. The largest anthropogenic source of CO in the United States is vehicle emissions.
Explanation:
Hope this helps- good Luck! ^w
Answer: chemical
Explanation: whenever heat is applied, it indicates a chemical change
Answer : The number of moles of
produced from the reaction is, 14 moles
Explanation :
The given balanced reaction is,

By the stoichiometry, 1 mole of cesium fluoride react with the 1 mole of xenon hexafluoride to give 1 mole of cesium xenon heptafluoride.
That means the mole ratio of 
As 14 moles of cesium fluoride react with the 14 moles of xenon hexafluoride to give 14 moles of cesium xenon heptafluoride.
Hence, the number of moles of
produced from the reaction is, 14 moles