Answer:
1913. Henry Moseley determined the atomic number of each of the known elements. He realized that, if the elements were arranged in order of increasing atomic number rather than atomic weight, they gave a better fit within the 'periodic table'.
Explanation:
GOO
8.8 × 10-5 M is the [H3O+] concentration in 0.265 M HClO solution.
Explanation:
HClO is a weak acid and does not completely dissociate in water as ions.
the equation of dissociation can be written and ice table to be formed.
HClO +H2O ⇒ ClO- + H3O+
I 0.265 0 0
C -x +x +x
E 0.265-x +x +x
Now applying the equation of Ka, where Ka is given as 2.9 × 10-8.
Ka = ![\frac{[ClO-][H3O+]}{[HClO]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BClO-%5D%5BH3O%2B%5D%7D%7B%5BHClO%5D%7D)
2.9 × 10^-8 = ![\frac{[x] [x]}{[0.265-x]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bx%5D%20%5Bx%5D%7D%7B%5B0.265-x%5D%7D)
= 7.698 x
x = 8.8 × 10-5 M
The hydronium ion concentration is 8.8 × 10-5 M in 0.265 M solution of HClO.
Wouldn’t it be half of each? For 36 I guess is 18 and 54 will be 27, (NOT SURE)
Answer:

Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration
= 7.50 mg
Final concentration
= 0.25 mg
Time = ?
Applying in the above equation, we get that:-
