<span>To find the volume of the plate without accounting for the hole firstly
V = (15.0 cm)(12.5 cm)(0.250 cm) = 46.875 cm^3
and the volume of the hole is
(pi)(1.25 cm)^2(0.250 cm) = 1.2272 cm^3
we will subtract the volume of the hole from the rest 45.648 cm^3
the multiply this by the density of the alloy to find the mass
(8.80 g/cm^3)(45.648 cm^3) = 401.701 g.
0.044% of this is Si, so (0.00044)(401.701 g) = 0.17675 g is silicon.
by the number of atoms and using average atomic mass of silicon and Avogadro's number to find the number of silicon atoms:
(0.17675 g)(1 mol/28.0855 g)(6.022E23 atoms/1 mol) =3.794E21atoms of Si
3.10% of these are Si-30:(0.0310)(3.794E18 atoms)=1.176E20 atoms of Si-30 and with two significant figures, 1.2E20 atoms.
hope this helps
</span>
Answer:
0.6941 mg
Explanation:
First we <u>calculate how many LiNO₃ moles there are</u>, using the <em>given concentration and volume</em>:
- 1.0 mL * 0.10 M = 0.10 mmol LiNO₃
As 1 mol of LiNO₃ contains 1 mol of Li,<em> in the problem solution there are 0.10 mmol of Li</em> (the only metallic ion present).
Now we<u> convert Li milimoles into miligrams</u>, using its <em>atomic mass</em>:
- 0.10 mmol Li * 6.941 mg/mmol = 0.6941 mg
The balanced chemical reaction is:
<span>3N2H4(l)→4NH3(g)+N2(g)
</span>
The amounts given for the N2H4 reactant will be the starting point for our calculations.
2.6mol N2H4 ( 4 mol NH3 / 3 mol N2H4 ) = 3.47 mol NH3
4.05mol N2H4 ( 4 mol NH3 / 3 mol N2H4 ) = 5.4 mol NH3
63.8g N2H4 <span>( 4 mol NH3 / 3 mol N2H4 ) = 85.07 mol NH3</span>
It would be an physical change ; if you melt butter the butter goes from a solid to a liquid so therefore the physical state is changed.
1.34 L of HF
Explanation:
We have the following chemical reaction:
Sn (s) + 2 HF (g) → SnF₂ (s) + H₂ (g)
First we calculate the number of moles of SnF₂:
number of moles = mass / molecular weight
number of moles of SnF₂ = 5 / 157 = 0.03 moles
From the chemical reaction we see that 1 mole of SnF₂ are produced from 2 moles of SnF₂. This will mean that 0.03 moles of SnF₂ are produced from 0.06 moles of HF.
Now at standard temperature and pressure (STP) we can use the following formula to calculate the volume of HF:
number of moles = volume / 22.4 (L/mole)
volume of HF = number of moles × 22.4
volume of HF = 0.06 × 22.4 = 1.34 L
Learn more about:
problems with gases at STP
brainly.com/question/8857334
#learnwithBrainly