Answer:
c) 2.02 x 10^16 nuclei
Explanation:
The isotope decay of an atom follows the equation:
ln[A] = -kt + ln[A]₀
<em>Where [A] is the amount of the isotope after time t, k is decay constant, [A]₀ is the initial amount of the isotope</em>
[A] = Our incognite
k is constant decay:
k = ln 2 / Half-life
k = ln 2 / 4.96 x 10^3 s
k = 1.40x10⁻⁴s⁻¹
t is time = 1.98 x 10^4 s
[A]₀ = 3.21 x 10^17 nuclei
ln[A] = -1.40x10⁻⁴s⁻¹*1.98 x 10^4 s + ln[3.21 x 10^17 nuclei]
ln[A] = 37.538
[A] = 2.01x10¹⁶ nuclei remain ≈
<h3>c) 2.02 x 10^16 nuclei</h3>
We are given with the specific heat capacity of ethanol, the mass of the sample and the temperature change to determine the total amount of heat to raise the temperature. The formula to be followed is H = mCpΔT. Upon subsituting, H = 79 g * 2.42 J/gC *(385-298)C = 16.63 kJ
Answer:
1 question is- I believe 4. Melting Question 2 is Density
Explanation:
THOUGHT ABOUT IT!!!
We use the formula,
m = V\rho
Here, m is the mass, V is the volume and
density
Also

Here l is length, w is width and h is height.
(a) The volume of the room,

The volume of the room in cubic feet,

(b) Now the mass of the air in room,
.
Therefore, the weight of the air in room,
.
The weight of air in the room in pounds,
