1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
3 years ago
12

A daredevil is shot out of a cannon at 45.0° to the horizontal with an initial speed of 31.0 m/s. A net is positioned a horizont

al distance of 48.5 m from the cannon. At what height above the cannon should the net be placed in order to catch the daredevil?
Physics
2 answers:
hodyreva [135]3 years ago
5 0

Answer:

s = vcos(x)t

50 = 25cos(45)t

cos(45)t = 2

t = 2/cos(45) = 2sqrt(2)

h = vsin(x)t + gt^2/2

h = 25sin(45)*2sqrt(2) - 4.9*8

h = 10.8 metres

Explanation:

nikklg [1K]3 years ago
4 0

Answer:

24.5 m

Explanation:

First, find the time it takes for the daredevil to travel 48.5 m horizontally:

x = x₀ + v₀ t + ½ at²

(48.5 m) = (0 m) + (31.0 m/s cos 45.0°) t + ½ (0 m/s²) t²

t = 2.21 s

Next, find the vertical position reached at this time:

y = y₀ + v₀ t + ½ at²

y = (0 m) + (31.0 m/s sin 45.0°) (2.21 s) + ½ (-9.8 m/s²) (2.21 s)²

y = 24.5 m

The net should be placed 24.5 meters above the cannon.

You might be interested in
A(n) __________ refers to a substance or treatment that is often used in an experiment but does not have an actual medicinal or
kipiarov [429]

Answer:

A placebo refers to a substance or treatment that is often used in an experiment but does not have an actual medicinal or experimental benefit.

Explanation:

3 0
2 years ago
Read 2 more answers
A rocket accelerates by burning its onboard fuel, so its mass decreases with time. Suppose the initial mass of the rocket at lif
Serggg [28]

Answer:

Height of the rocket be one minute after liftoff is 40.1382 km.

Explanation:

v(t)=-gt-v_e\times \ln \frac{m-rt}{m}

v = velocity of rocket at time t

g = Acceleration due to gravity =9.8 m/s^2

v_e = Constant velocity relative to the rocket = 2,900m/s.

m = Initial mass of the rocket at liftoff = 29000 kg

r = Rate at which fuel is consumed = 170 kg/s

Velocity of the rocket after 1 minute of the liftoff =v

t = 1 minute = 60 seconds'

Substituting all the given values in in the given equation:

v(60)=-9.8 m/s^2\times 60 s-2,900m/s\times \ln (\frac{29,000 kg-170 kg/s\times 60 s}{2,9000 kg})

v(60) = 668.97 m/s

Height of the rocket = h

Velocity=\frac{Displacement}{time}

668.97 m/s=\frac{h}{60 s}

h=668.97 m/s\times 60 s=40,138.2 m = 40.1382 km

Height of the rocket be one minute after liftoff is 40.1382 km.

4 0
3 years ago
A drunken sailor stumbles 550 meters north, 500 meters northeast, then 450 meters northwest. What is the total displacement and
cluponka [151]

Answer:

Resultant displacement = 1222.3 m

Angle is 88.3 degree from +X axis.

Explanation:

A = 550 m north

B = 500 m north east

C = 450 m north west

Write in the vector form

A = 550 j

B = 500 (cos 45 i + sin 45 j ) = 353.6 i + 353.6 j

C = 450 ( - cos 45 i + sin 45 j ) = - 318.2 i + 318.2 j

Net displacement is given by

R = (353.6 - 318.2) i + (550 + 353.6 + 318.2) j

R = 35.4 i + 1221.8 j

The magnitude is

R = \sqrt{35.4^{2}+1221.8^{2}}R = 1222.3 m

The direction is given by

tan\theta =\frac{1221.8}{35.4}\\\\\theta = 88.3^{o}

3 0
3 years ago
Explain an example of how energy is transferred from one form to another
scoray [572]

Answer:

read the explanation

Explanation:

Purchased electricity is fed into our TVs and is converted to light and sound.

Electricity goes into an electric bulb and is converted to visible light and heat energy.

Chemical Energy is converted to Electrical Energy (stove)

Chemical food energy is converted to Energy to Work (person running).

6 0
3 years ago
A 80 W light bulb (normally run at 120 V) is attached to a transformer. The voltage source in the transformer is 65 V and Np = 3
Marina CMI [18]

67.8 turns needed by the secondary coil to run the bulb.

<u>Explanation</u>:

We know that,  

\text { Electric power }(p)=\frac{V^{2}}{R}

\text { Hence, } \frac{P_{1}}{P_{2}}=\frac{V_{1}^{2} / R}{V_{2}^{2} / R}

\frac{P_{1}}{P_{2}}=\frac{V_{1}^{2}}{V_{2}^{2}}

For calculating number of turns

\frac{N_{P}}{N_{S}}=\frac{V_{P}}{V_{S}}

Given that,

80 \mathrm{W}\left(P_{1}\right) \text { bulb with voltage } 120 \mathrm{V}\left(V_{1}\right) \text { is connected to a transformer. }

\text { The source voltage of a transformer is }\left(V_{P}\right) \text { is } 65 \mathrm{V}

\text { The number of turns in primary winding of transformer is }\left(N_{P}\right) \text { is } 30 .

We need to find the number of turns in the secondary winding \left(N_{S}\right) to run the bulb at 120W \left(P_{2}\right)

Firstly find the secondary voltage in the transformer use, \frac{P_{1}}{P_{2}}=\frac{V_{1}^{2}}{V_{2}^{2}}

\frac{80}{120}=\frac{120^{2}}{V_{2}^{2}}

V_{2}^{2}=\frac{120^{2} \times 120}{80}

V_{2}^{2}=\frac{1728000}{80}

V_{2}^{2}=21600

V_{2}=\sqrt{21600}

V_{2}=146.9 \mathrm{V}=V_{S}

Now, finding the number of turns in secondary coil. Use, \frac{N_{P}}{N_{S}}=\frac{V_{P}}{V_{S}}

\frac{30}{N_{S}}=\frac{65}{146.9}

N_{S}=\frac{30 \times 146.9}{65}

N_{S}=\frac{4407}{65}N_{S}=67.8

The number of turns in the secondary winding are 67.8 turns.

6 0
3 years ago
Other questions:
  • A mover hoists a 50 kg box from the ground to a height of 2 m. What was the change in the box's energy
    11·1 answer
  • What is 9/15 equal to
    10·2 answers
  • Which heat transfer process is important in the transfer of energy from the Sun to Earth?
    15·1 answer
  • Which type of stress is a uniform stress that doesn't lead to earthquakes?
    7·2 answers
  • When does fertilization take place
    10·1 answer
  • Shoo the fly flaps its wings back and forth 140 times each second. The frequency of the wing flapping is ____ Hz.
    10·1 answer
  • Match each method of transferring electric charge with the correct description
    8·2 answers
  • How many cups are in 4 gallons
    9·1 answer
  • Thank youuuu.........
    6·1 answer
  • A particle travels in a circle of radius 14 m at a constant speed of 21 m/s. What is the magnitude of the acceleration (in m/s2)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!