Answer:
10.8 days (3 sig.figs.)
Explanation:
All radioactive decay is 1st order decay defined by the expression A = A₀e^-kt
which is solved for time of decay (t) => t = ln(A/A₀) / -k
A = final weight = 1.0 gram
A₀ = initial weight = 16.0 grams
k = rate constant = 0.693/t(1/2) = 0.693/2.69 days = 0.258 days⁻¹
t = ln(1/16) / -0.258da⁻¹ = (-2.77/-0.258) days = 10.74646792 days (calculator)
≅ 10 days (1 sig. fig. based on given 1 gram mass)
Injecting salt crystals over the ocean to grow cloud droplets has been proposed in efforts to make the clouds brighter thereby affecting the radiation budget. The light of the sun shines on Earth, some of that light is reflected by the clouds back to space and some of the light reaches the earth and warms our planet. The earth and the hot oceans emit infrared radiation (IR), which we feel as heat. That IR "light"; returns to space through the atmosphere. Most are trapped by greenhouse gases, which keep the earth warm. Soon after, the IR radiation returns to space. Scientists call this "energy budget of the Earth" this cycle of incoming and outgoing energy.
Answer:
A unit of mass used to express atomic and molecular weights, equal to one-twelfth of the mass of an atom of carbon-12. It is equal to approximately 1.66 x 10-27 kg.
Explanation:
Ionic bond involves electrostatic attraction between oppositely charged ions.
The ions are atoms that have gained 1 or more electrons and atoms that have lost 1 or more electrons.
<span>Answer: The type of bond that requires the give and take of electrons is Ionic bond</span>
Answer:
Zinc + Hydrochloric Acid Zinc Chloride and Hydrogen Gas
Zn + 2HCI - ZnCl2 + H2
Explanation:
Be sure to label your model to clearly show how you are representing the atoms