Answer:
<u>One lone-Pair is present in Ammonia</u>
<u></u>
Explanation:
The number of valence electron in N = 5
The number of Valence electron in H = 1
The formula of ammonia = NH3
Total valence electron in ammonia molecule = 5 +3(1) = 5+3 = 8
The lewis structure suggest that :
Nitrogen completes its octet by sharing the electron pair with 3 hydrogen atoms.
3 electron of Nitrogen are involved in sharing with Hydrogen
So,<u><em> remaining two electron are left non-bonded</em></u> . Hence they exist as lone- pair
So, there is only 1 lone pair in the ammonia molecule .
The shape of NH3 is bent according to VSEPR theory . This is so because the presence of 1 lone pair causes more repulsion and occupy more space.
Thus the lone pair is changing the shape of the ammonia molecule . It also increase the dipole moment of the molecule , which gives polarity to it.
I think it’s A but I’m not sure, if it’s wrong I’m sorry
The correct answer is the second option. During fusion, uranium atoms are fused together. Fusion reaction happens when two or more nuclei combine or collide to form an element with a higher atomic number. In this process, some of the matter of the fusing nuclei is converted to energy.
1. O2 is not a compound because it only contains one or more type of the same element atom.
2. O2 is a molecule because a molecule is one or more of the same element atom.
3. The law of conversion is that the mass of the system will stay the same when transfer takes place. Like if you had an equation O+H2—> H2O the mass will remain the same.
4. It will be equal to 10 because of law of conservation of matter.
5. One observation can be that the compound, reaction you’re observing, has change states.
Answer:
The correct answer is because they have same number of protons but different number of neutrons.
Explanation:
Isotopes are atoms of the same element but differ only in the number of neutrons in the nucleus, i.e. they have same atomic number but different mass number.
Mass number is affected as they have different number of neutrons, thus effecting their physical properties.
The number of electrons and protons are same, i.e. their atomic number is same and thus their chemical properties are same as chemical properties are determined by the atom’s electronic configuration and that relates to number of protons.