<span>Answer:
A 0.04403 g sample of gas occupies 10.0-mL at 289.0 K and 1.10 atm. Upon further analysis, the compound is found to be 25.305% C and 74.695% Cl. What is the molecular formula of the compound?
--------------------------------------...
Seems like I did a problem very similar to this--this must be the "B" test. But the halogen was different.
25.305% C/12 = 2.108
74.695% Cl/35.5 = 2.104
So the empirical formula would be CH. However, there are many compounds which fit this bill, so we have to use the gas data. (And I made, in the previous problem, the simplifying assumption that 289C and 1.10 atm would offset each other, so I'll do that, too.)
0.044 grams/10 ml = x/22.4 liters
0.044g/0.010 liters = x/22.4 liters
22.4 liters/0.010 liters = 2240 (ratio)
2240 x .044 = 98.56 (actual atomic weight)
CCl = 35.5+12 or 47.5, so two of those is 95 grams/mole.
This is sufficiient to distinguish C2CL2, (dichloroacetylene)
from C6CL6 (hexachlorobenzene) which would
mass 3 times as much.</span>
0001 M HCl is the same as saying that 1 *10-4 moles of H+ ions have been added to solution. The -log[. 0001] =4, so the pH of the solution =4.
The answer is yes I believe so.
Answer: Molar mass of
is 17.03 g
Explanation:
Molar mass is defined as the mass in grams of 1 mole of a substance.
S.I Unit of Molar mass is gram per mole and it is represented as g/mol.
It is found by adding the atomic masses of all the elements present.
Atomic Mass of Nitrogen (N) = 14.007 g
Atomic Mass of Hydrogen (H) = 1.008 g
Molar mass of
= 1(14.007)+3(1.008) g = 17.03 g