Answer:
11.31g NaClO₂
Explanation:
<em> Is given 250mL of a 1.60M chlorous acid HClO2 solution. Ka is 1.110x10⁻². What mass of NaClO₂ should the student dissolve in the HClO2 solution to turn it into a buffer with pH =1.45? </em>
It is possible to answer this question using Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where pKa is -log Ka = 1.9547; [A⁻] is the concentration of the conjugate base (NaClO₂), [HA] the concentration of the weak acid</em>
You can change the concentration of the substance if you write the moles of the substances:
[Moles HClO₂] = 250mL = 0.25L×(1.60mol /L) = <em>0.40 moles HClO₂</em>
Replacing in H-H expression, as the pH you want is 1.45:
1.45 = 1.9547 + log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
-0.5047 = log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
<em>0.3128 = </em>[Moles NaClO₂] / [0.40 moles HClO₂]
0.1251 = Moles NaClO₂
As molar mass of NaClO₂ is 90.44g/mol, mass of 0.1251 moles of NaClO₂ is:
0.1251 moles NaClO₂ ₓ (90.44g / mol) =
<h3>11.31g NaClO₂</h3>
Answer:
★ v = d/t
★ v = 90/30
★ v =3
<u>Acc</u><u> </u><u>to</u><u> </u><u>question</u>
★ momentum = mass * velocity
★ m = 25×3
★ m = 75kgm/s
Hope it help
The rate at which a radioactive<span> isotope decays is measured in </span>half-life. The termhalf-life<span> is defined as the time it takes for one-</span>half<span> of the atoms of a </span>radioactive material<span> to disintegrate. </span>Half-lives<span> for </span>various radioisotopes<span> can range from a few microseconds to billions of years.
</span>.
back at it again with that answer
.
zane
Answer:
choose the one with the least amount of electrons ex:iron
Explanation:
It is A Liquid not A solid.