Answer:
I don't think it does affect Earth
Explanation:
The sun is too far away to get corona let alone spread it.
Answer:
3.91 moles of Neon
Explanation:
According to Avogadro's Law, same volume of any gas at standard temperature (273.15 K or O °C) and pressure (1 atm) will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = <u>???</u>
V = Volume = 87.6 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 87.6 L) ÷ 22.4 L
= 3.91 moles
<h3>2nd Method:</h3>
Assuming that the gas is acting ideally, hence, applying ideal gas equation.
P V = n R T ∴ R = 0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹
Solving for n,
n = P V / R T
Putting values,
n = (1 atm × 87.6 L)/(0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹ × 273.15K)
n = 3.91 moles
Result:
87.6 L of Neon gas will contain 3.91 moles at standard temperature and pressure.
The answer is B. A mixture can be separated as shown in the example.<span />
Answer: The reactivity of group 7 decreases as we move down the group because:
Explanation:
The elements of group 7 that is fluorine to iodine. The halogens are non metals and they react with metals to gain electrons. The metals loose electrons and the non metal gains it.
As we move down the group the atomic radius gets bigger( more electron and more proton) and as a result the outer shells move further away from the nucleus.
There is more distance between the negatively charged electrons and positively charged nucleus.
Therefore the force of attraction between the shells and nucleus is lesser or weaker.
This makes attracting an extra electron from metals very difficult which results in weaker reaction.
Consequently, the reactivity decreases as we move down the group 7
That's a ionic compound because it has a metal and polyatomic parts within the chemical formula.