Answer:
Explanation:
60 meters is he answer for this question
Absolute zero is not about numbers. It's about temperature, and the
motion of molecules in gases.
You know that the temperature we feel with our skin is the result of the
average speed of all the tiny molecules zipping around or vibrating in
the solid, liquid, or gas.
The faster they're all moving, the warmer the substance feels to us.
The slower they're all moving, the cooler the substance feels to us.
When molecules slow down to zero and lose all of their kinetic energy,
that temperature is what we call 'absolute zero' ... if they're not moving
at all, then they can't move any slower.
Hi there!
Angular momentum is equivalent to:

L = angular momentum (kgm²/s)
I = moment of inertia (kgm²)
ω = angular velocity (rad/sec)
Plug in the given values for moment of inertia and angular speed:

Answer:
0.465 kgm/s
Explanation:
Given that
Mass of the cart A, m1 = 450 g
Speed of the cart A, v1 = 0.85 m/s
Mass of the cart B, m2 = 300 g
Speed of the cart B, v2 = 1.12 m/s
Now, using the law of conservation of momentum.
It is worthy of note that our cart B is moving in opposite directions to A
m1v1 + m2v2 =
(450 * 0.85) - (300 * 1.12) =
382.5 - 336 =
46.5 gm/s
If we convert to kg, we have
46.5 / 100 = 0.465 kgm/s
Thus, the total momentum of the system is 0.465 kgm/s
Answer: 8.6 µm
Explanation:
At a long distance from the source, the components (the electric and magnetic fields) of the electromagnetic waves, behave like plane waves, so the equation for the y component of the electric field obeys an equation like this one:
Ey =Emax cos (kx-ωt)
So, we can write the following equality:
ω= 2.2 1014 rad/sec
The angular frequency and the linear frequency are related as follows:
f = ω/ 2π= 2.2 1014 / 2π (rad/sec) / rad = 0.35 1014 1/sec
In an electromagnetic wave propagating through vacuum, the speed of the wave is just the speed of light, c.
The wavelength, speed and frequency, are related by this equation:
λ = c/f
λ = 3.108 m/s / 0.35. 1014 1/s = 8.6 µm.