From the problem, the vertex = (0, 0) and the focus = (0, 3)
From the attached graphic, the equation can be expressed as:
(x -h)^2 = 4p (y -k)
where (h, k) are the (x, y) values of the vertex (0, 0)
The "p" value is the difference between the "y" value of the focus and the "y" value of the vertex.
p = 3 -0
p = 3
So, we form the equation
(x -0)^2 = 4 * 3 (y -0)
x^2 = 12y
To put this in proper quadratic equation form, we divide both sides by 12
y = x^2 / 12
Source:
http://www.1728.org/quadr4.htm
Answer:
Multiply it like a normal number.
Step-by-step explanation:
Take the point away in both numbers
line the numbers up and add the zero at the end of 28
multiply
add the decimal point back after solved (3 decimal points)
818
x280
-----------
Answer:
1, 4, 16, 64, 256, 1024, 4096, 16384
Step-by-step explanation:
Multiply by 4
Answer:
75%
Step-by-step explanation:
or since a percent is a decimal then 0.75
Question is Incomplete, Complete question is given below.
Prove that a triangle with the sides (a − 1) cm, 2√a cm and (a + 1) cm is a right angled triangle.
Answer:
∆ABC is right angled triangle with right angle at B.
Step-by-step explanation:
Given : Triangle having sides (a - 1) cm, 2√a and (a + 1) cm.
We need to prove that triangle is the right angled triangle.
Let the triangle be denoted by Δ ABC with side as;
AB = (a - 1) cm
BC = (2√ a) cm
CA = (a + 1) cm
Hence,
Now We know that

So;


Now;

Also;

Now We know that




[By Pythagoras theorem]

Hence, 
Now In right angled triangle the sum of square of two sides of triangle is equal to square of the third side.
This proves that ∆ABC is right angled triangle with right angle at B.