Answer:

Solution:
Note: Refer the diagram


Drag coefficient data for selected objects table at
Hemisphere (open end facing flow), 
Substituting all parameters,

Then,
![\begin{aligned}&V_{b}=V_{w}-\left[\frac{2 F_{R}}{\rho\left(C_{D, w} A_{w}+C_{D, B} A_{b}\right)}\right]^{\frac{1}{2}} \dots\\&V_{w}=24 \times 1000 \times \frac{1}{3600}\\&V_{w}=6.67 \frac{ m }{ s }\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26V_%7Bb%7D%3DV_%7Bw%7D-%5Cleft%5B%5Cfrac%7B2%20F_%7BR%7D%7D%7B%5Crho%5Cleft%28C_%7BD%2C%20w%7D%20A_%7Bw%7D%2BC_%7BD%2C%20B%7D%20A_%7Bb%7D%5Cright%29%7D%5Cright%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cdots%5C%5C%26V_%7Bw%7D%3D24%20%5Ctimes%201000%20%5Ctimes%20%5Cfrac%7B1%7D%7B3600%7D%5C%5C%26V_%7Bw%7D%3D6.67%20%5Cfrac%7B%20m%20%7D%7B%20s%20%7D%5Cend%7Baligned%7D)
And the equation becomes,
![\begin{aligned}&V_{b}=6.67-\left[\frac{2 \times 5.52}{1.23(1.42 \times 1.17+1.2 \times 0.3)}\right]^{\frac{1}{2}}\\&V_{b}=6.67-2.11\\&V_{b}=4.56 \frac{ m }{ s }\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26V_%7Bb%7D%3D6.67-%5Cleft%5B%5Cfrac%7B2%20%5Ctimes%205.52%7D%7B1.23%281.42%20%5Ctimes%201.17%2B1.2%20%5Ctimes%200.3%29%7D%5Cright%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%26V_%7Bb%7D%3D6.67-2.11%5C%5C%26V_%7Bb%7D%3D4.56%20%5Cfrac%7B%20m%20%7D%7B%20s%20%7D%5Cend%7Baligned%7D)
Thus the floyds travels at
wind speed.
Answer:
A geological engineer
Explanation:
The field of geological engineering is concerned with geology, civil engineering and area of mining , geography and forestry.
Geological engineers apply their knowledge of earth science to solve human problems. Such as creating an equipment using science that can aid in solving the challenge in separating coal from dirt components in an environmental friendly manner.
Geological engineers investigate this that are connected to the earth such as mines, roads, quarries , pipelines, petroleum products, forests and building projects. They also perform surveys on effects of landslides and earthquakes.
Answer:
Explanation:
Hello!
To solve this problem you must follow the following steps, which are fully registered in the attached image.
1. Draw the complete outline of the problem.
2. Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties.
3. Use temodynamic tables to find the density of water in state 1, by means of temperature and quality, with this value and volume we can find the mass.
3. Use thermodynamic tables to find the internal energy in state 1 and two using temperature and quality.
4. uses the first law of thermodynamics that states that the energy in a system is always conserved, replaces the previously found values and finds the work done.
5. draw the pV diagram using the 300F isothermal line
Answer:
Total no. of ways to line up cars is 20! = 2.43 c 10^18
Probability that the cars alternate is 0.00001 or 0.001%
Explanation:
Since, the position of a car is random.Therefore, number ways in which cars can line up is given as:
<u>No. of ways = 20! = 2.43 x 10^18</u>
For the probability that cars alternate, two groups will be formed, one consisting of US-made 10 cars and other containing 10 foreign made. The number of favorable outcomes for this can be found out as the arrangements of 2! between these groups multiplied by the arrangements of 10! for each group, due to the arrangements among the groups themselves.
Favorable Outcomes = 2! x 10! x 10!
Thus the probability of event will be:
Probability = Favorable Outcomes/Total No. of Ways
Probability = (2! x 10! x 10!)/20!
<u>Probability = 0.00001 = 0.001%</u>