Answer:
Newton's third law of motion states that for every action, there is equal and opposite reaction.
While space walking, when the astronaut gets detached from the space ship, she floats in space holding a wrench. In order to get back to the spaceship, she should throw the wrench in the opposite direction of the spaceship. This action would cause a reaction on her own body and she would be pushed away from the wrench and towards the spaceship. Thus, she can return back to the spaceship in this way.
Answer;
Average speed = 47.5 km/hr
Explanation and solution;
Average Speed = Total distance /Total time
Total distance;
-In the first two hours travelling at 40km/hr, total distance traveled is 80km.
(40 × 2) = 80 km
-In next two hours distance covered is 110 km. (55 ×2)
Total distance = 110 + 80 = 190 km
Total time = 2 + 2 = 4 hours
Average Speed = Total distance /Total time
= 190/4
= 47.5 km/hr
Kinetic energy can be passed from one object to another when objects collide,
Answer: True
Hope This Helps! :3
Answer:
For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects.
Explanation:
Every force sent into an object will sent a force in return.
If you smack a table, you can feel the table "push back"
what is the final speed of the incoming ball if it is much more massive than the stationary ball? express your answer using two significant figures. v1 = 200 m / s submitprevious answers correct
Perfectly elastic collisions means that both mechanical energy and
momentum are conserved.
Therefore, for this case, we have the equation to find the final velocity of the incoming ball is given by
v1f = ((m1-m2) / (m1 + m2)) v1i
where,
v1i: initial speed of ball 1.
v1f: final speed of ball 1.
m1: mass of the ball 1
m2: mass of the ball 2
Since the mass of the ball 1 is much larger than the mass of the ball 2 m1 >> m2, then rewriting the equation:
v1f = ((m1) / (m1) v1i
v1f = v1i
v1f = 200 m / s
answer
200 m / s
part b part complete what is the final direction of the incoming ball with respect to the initial direction if it is much more massive than the stationary ball? forward submitprevious answers correct
Using the equation of part a, we can include in it the directions:
v1fx = ((m1-m2) / (m1 + m2)) v1ix
v1i: initial velocity of ball 1 in the direction of the x-axis
v1f: final speed of ball 1 in the direction of the x-axis
like m1 >> m2 then
v1fx = v1ix
v1fx = 200 m / s (positive x direction)
So it is concluded that the ball 1 continues forward.
answer:
forward
part c part complete what is the final speed of the stationary ball if the incoming ball is much more massive than the stationary ball ?.
The shock is perfectly elastic. For this case, we have that the equation to find the final velocity of the stationary ball is given by
v2f = ((2m1) / (m1 + m2)) v1i
where,
v1i: initial speed of ball 1.
v2f: final speed of ball 2.
m1: mass of the ball 1
m2: mass of the ball 2
Then, as we know that m1 >> m2 then
v2f = ((2m1) / (m1) v1i
v2f = 2 * v1i
v2f = 2 * (200 m / s)
v2f = 400 m / s
answer
400m / s