1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
3 years ago
14

An organ pipe is 248 cm long.(a) Determine the fundamental overtone if the pipe is closed at one end.(b) Determine the first aud

ible overtone if the pipe is closed at one end.(c) Determine the second audible overtone if the pipe is closed at one end.(d) Determine the third audible overtone if the pipe is closed at one end.(e) Determine the fundamental overtone if the pipe is open at both ends.(f) Determine the first audible overtone if the pipe is open at both ends.(g) Determine the second audible overtone if the pipe is open at both ends.(h) Determine the third audible overtone if the pipe is open at both end.
Physics
1 answer:
Phantasy [73]3 years ago
7 0

(a) 34.6 Hz

The fundamental frequency of a pipe closed at one end is given by

f_1 = \frac{v}{4 L}

where

v = 343 m/s is the speed of the sound in air

L is the length of the pipe

In this problem,

L = 248 cm = 2.48 m

So, the fundamental frequency is

f_1 = \frac{343 m/s}{4 (2.48 m)}=34.6 Hz

(b) 103.8 Hz

In a open-closed pipe, only odd harmonics are produced; therefore, the frequency of the first overtone (second harmonic) is given by:

f_2 = 3 f_1

where

f_1 = 34.6 Hz is the fundamental frequency.

Substituting into the equation,

f_2 = 3 (34.6 Hz)=103.8 Hz

(c) 173 Hz

The frequency of the second overtone (third harmonic) is given by:

f_3 = 5 f_1

where

f_1 = 34.6 Hz is the fundamental frequency.

Substituting into the equation,

f_3 = 5 (34.6 Hz)=173 Hz

(d) 242.2 Hz

The frequency of the third overtone (fourth harmonic) is given by:

f_4 = 7 f_1

where

f_1 = 34.6 Hz is the fundamental frequency.

Substituting into the equation,

f_4 = 7 (34.6 Hz)=242.2 Hz

(e) 69.2 Hz

The fundamental frequency of a pipe open at both ends is given by

f_1 = \frac{v}{2 L}

where

v = 343 m/s is the speed of the sound in air

L is the length of the pipe

In this problem,

L = 248 cm = 2.48 m

So, the fundamental frequency is

f_1 = \frac{343 m/s}{2 (2.48 m)}=69.2 Hz

(f) 138.4 Hz

In a open-open pipe, both odd and even harmonics are produced; therefore, the frequency of the first overtone (second harmonic) is given by:

f_2 = 2 f_1

where

f_1 = 69.2 Hz is the fundamental frequency.

Substituting into the equation,

f_2 = 2 (69.2 Hz)=138.4 Hz

(g) 207.6 Hz

The frequency of the second overtone (third harmonic) in an open-open pipe is given by:

f_3 = 3 f_1

where

f_1 = 69.2 Hz is the fundamental frequency.

Substituting into the equation,

f_3 = 3 (69.2 Hz)=207.6 Hz

(h) 276.8 Hz

The frequency of the third overtone (fourth harmonic) in an open-open pipe is given by:

f_4 = 4 f_1

where

f_1 = 69.2 Hz is the fundamental frequency.

Substituting into the equation,

f_4 = 4 (69.2 Hz)=276.8 Hz

You might be interested in
If the speed of a car is 20m/s .How long does it take to cover a distance of 1km?<br>​
3241004551 [841]

Answer: 50 seconds

Explanation:

1km=1000m

Distance/speed=time

1000/20=50

50 seconds

7 0
3 years ago
Read 2 more answers
PLEASE HELP NO LINKS NEED HELP FAST
MrRa [10]

Answer:

The galaxies outside of our own are moving away from us, and the ones that are farthest away are moving the fastest. This means that no matter what galaxy you happen to be in, all the other galaxies are moving away from you

Explanation:

7 0
2 years ago
What scientific discovery did Daniel Bernoulli work on with Leonhard Euler?
Dmitriy789 [7]
He worked with Euler on elasticity and the development of the Euler-Bernoulli beam equation.
8 0
3 years ago
The Pasig Revolving Tower has an estimated height of 45.23 meters. How high is it in yard? ​
hichkok12 [17]

Answer:

50.26

I hope its help

Thank you

6 0
3 years ago
Identical balls oscillate with the same period T on Earth. Ball A is attached to an ideal spring and ball B swings back and fort
viva [34]

Answer:

B. Ball B will take longer to complete one cycle

Explanation:

This is simply because the period of a simple pendulum is affected by acceleration due to gravity, while the period of an ideal spring is not.

This can be clearly deduced by observing the formulas for the various systems.

Formula for period of simple pendulum:

T = 2π × \sqrt{\frac{L}{g} }

Formula for period of an oscillating spring:

T= 2π ×\sqrt{\frac{m}{K} }

The period of the simple pendulum is affected by the length of the string and the acceleration due to gravity as shown above. Thus, it will have a different period as the gravitational acceleration changes on the moon. Thus will be a larger period <em>(slower oscillation) </em>as the gravitational acceleration is smaller in this case

The period of the oscillating spring is only affected by the mass of the load an the spring constant as shown above. Thus, it will have a period similar to the one it had on the earth because the mass of the ball did not change as the setup was taken to the moon.

All these will make the ball on the spring (Ball B) oscillate faster than the ball swinging on the string (Ball A)

6 0
3 years ago
Other questions:
  • You are given a semiconductor resistor made from silicon with an impurity concentration of resistivity 1.00×10−3ωm. the resistor
    8·1 answer
  • Please help!!!!<br> Write 5<br> harmful effects of friction.
    8·1 answer
  • 5. What is the percent composition of sulfur in H2SO4?
    5·2 answers
  • A 2.0 kg, 20-cm-diameter turntable rotates at 100 rpm ons tionless bearings. Two 500 g blocks fall from above, hit the tum ble s
    14·1 answer
  • Plz help i beg, veryyy confused :)
    15·1 answer
  • Can you give me the definition of sound wave
    7·2 answers
  • Which of these cultures did NOT make major contributions to astronomy?
    13·1 answer
  • Which of the following is a common downside of net pens, one of the most common forms of aquaculture?
    15·2 answers
  • The diagram below shows different weights on the see-saw. Will the see-saw move?
    10·1 answer
  • Pluto has been reassigned and is now a dwarf planet. Why did scientists think this reassignment was necessary? If you were a sci
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!