Velocity tells you how fast and in what direction. Speed only tells how fast.
The analogous formula for magnetic fields is the Ampere's law.
To find the answer, we need to know about the Ampere's law of magnetism.
<h3>What's Ampere's law of magnetism?</h3>
Ampere's law states that the close line integral of magnetic field around a current carrying loop is directly proportional to the current enclosed within it.
<h3>What's is the mathematical expression of Ampere's law?</h3>
Mathematically, Ampere's law is
B•dl= μ₀I
Thus, we can conclude that the analogous formula for gauss law is the Ampere's law in magnetism.
Learn more about the Ampere's law here:
brainly.com/question/17070619
#SPJ4
a) For the motion of car with uniform velocity we have ,
, where s is the displacement, u is the initial velocity, t is the time taken a is the acceleration.
In this case s = 520 m, t = 223 seconds, a =0 
Substituting

The constant velocity of car a = 2.33 m/s
b) We have 
s = 520 m, t = 223 seconds, u =0 m/s
Substituting

Now we have v = u+at, where v is the final velocity
Substituting
v = 0+0.0209*223 = 4.66 m/s
So final velocity of car b = 4.66 m/s
c) Acceleration = 0.0209 
Answer:
<h2>C. <u>
0.55 m/s towards the right</u></h2>
Explanation:
Using the conservation of law of momentum which states that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision.
Momentum = Mass (M) * Velocity(V)
BEFORE COLLISION
Momentum of 0.25kg body moving at 1.0m/s = 0.25*1 = 0.25kgm/s
Momentum of 0.15kg body moving at 0.0m/s(body at rest) = 0kgm/s
AFTER COLLISION
Momentum of 0.25kg body moving at x m/s = 0.25* x= 0.25x kgm/s
<u>x is the final velocity of the 0.25kg ball</u>
Momentum of 0.15kg body moving at 0.75m/s(body at rest) =
0.15 * 0.75kgm/s = 0.1125 kgm/s
Using the law of conservation of momentum;
0.25+0 = 0.25x + 0.1125
0.25x = 0.25-0.1125
0.25x = 0.1375
x = 0.1375/0.25
x = 0.55m/s
Since the 0.15 kg ball moves off to the right after collision, the 0.25 kg ball will move at <u>0.55 m/s towards the right</u>
<u></u>