1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
2 years ago
6

Pleae answer brainlest due today

Engineering
2 answers:
VLD [36.1K]2 years ago
6 0
I'm tapping on the picture but it wont show up, maybe repost it?
iVinArrow [24]2 years ago
3 0
The picture won’t load
You might be interested in
Can you list three ways that real life earthquake conditions may differ from those made by a shaking table
jolli1 [7]

Answer:

No

Explanation:

8 0
3 years ago
How high a building could fire hoses effectively spray from the ground? Fire hose pressures are around 1 MPa. (It is also said t
Mrac [35]

Answer:

z_{2} = 91.640\,m

Explanation:

The phenomenon can be modelled after the Bernoulli's Principle, in which the sum of heads related to pressure and kinetic energy on ground level is equal to the head related to gravity.

\frac{P_{1}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}= z_{2}+\frac{P_{2}}{\rho\cdot g}

The velocity of water delivered by the fire hose is:

v_{1} = \frac{(300\,\frac{gal}{min} )\cdot(\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot (0.3\,m)^{2}}

v_{1} = 0.267\,\frac{m}{s}

The maximum height is cleared in the Bernoulli's equation:

z_{2}= \frac{P_{1}-P_{2}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}

z_{2}= \frac{1\times 10^{6}\,Pa-101.325\times 10^{3}\,Pa}{(1000\,\frac{kg}{m^{3}} )\cdot(9.807\,\frac{m}{s^{2}} )} + \frac{(0.267\,\frac{m}{s} )^{2}}{2\cdot (9.807\,\frac{m}{s^{2}} )}

z_{2} = 91.640\,m

7 0
3 years ago
How do technological artifacts affect the way that you live?
Maslowich

Answer:

Artefacts can influence our actions in several ways. They can be instruments, enabling and facilitating actions, where their presence affects the number and quality of the options for action available to us. They can also influence our actions in a morally more salient way, where their presence changes the likelihood that we will actually perform certain actions. Both kinds of influences are closely related, yet accounts of how they work have been developed largely independently, within different conceptual frameworks and for different purposes. In this paper I account for both kinds of influences within a single framework. Specifically, I develop a descriptive account of how the presence of artefacts affects what we actually do, which is based on a framework commonly used for normative investigations into how the presence of artefacts affects what we can do. This account describes the influence of artefacts on what we actually do in terms of the way facts about those artefacts alter our reasons for action. In developing this account, I will build on Dancy’s (2000a) account of practical reasoning. I will compare my account with two alternatives, those of Latour and Verbeek, and show how my account suggests a specification of their respective key concepts of prescription and invitation. Furthermore, I argue that my account helps us in analysing why the presence of artefacts sometimes fails to influence our actions, contrary to designer expectations or intentions.

When it comes to affecting human actions, it seems artefacts can play two roles. In their first role they can enable or facilitate human actions. Here, the presence of artefacts changes the number and quality of the options for action available to us.Footnote1 For example, their presence makes it possible for us to do things that we would not otherwise be able to do, and thereby adopt new goals, or helps us to do things we would otherwise be able to do, but in more time, with greater effort, etc

Explanation:

Technological artifacts are in general characterized narrowly as material objects made by (human) agents as means to achieve practical ends. ... Unintended by-products of making (e.g. sawdust) or of experiments (e.g. false positives in medical diagnostic tests) are not artifacts for Hilpinen.

3 0
3 years ago
On the generalized enthalpy departure chart, the normalized enthalpy departure values seem to approach zero as the reduced press
Alekssandra [29.7K]

Answer:

Enthalpy is a function of pressure hence normalized enthalpy departure values will approach zero with reduced pressure approaching zero

Explanation:

On the generalized enthalpy departure chart, the normalized enthalpy departure values seem to approach zero as the reduced pressure PR approaches zero. this is because enthalpy is a function of pressure therefore as the Pressure is reducing towards the zero value, the gas associated with the pressure tends to behave more like an Ideal gas.

For an Ideal gas the Normalized enthalpy departure value will be approaching the zero value.

4 0
3 years ago
Programming Assignment 2 Decimal and IEEE-754 ConversionsObjective: To write a C program (not C++) that converts numbers between
kondaur [170]

Answer:

// Program is written in C Programming Language

// Comments are used for explanatory purpose

// Program starts here

#include<stdio.h>

#include<math.h>

//Function to Convert to float

void To float(int num, int I)

{

//Create a kount variable

int kount;

// Start an iteration

for(kount=i-1; kount>0; kount--)

{

if((num>>kount) && 1) {printf("1");}

else { printf("0"); }

}

}

// Create a user defined variable

typedef union {// Definition

float Number;

struct

{

// Mantissa

unsigned int mant : 23;

// Exponent

unsigned int exp : 8;

// Sign

unsigned int sign: 1;

} raw;

} myfloat; // Variable name

// Create print segment

void printsegment(myfloat var)

{

printf("%d |", var.raw.sign);// Sign

To float(var.raw.exp,8); // Exponent

printf("|");

To float(var.raw.mant,8); // Mantissa

printf("\n");

}

// Function to Convert to Real

unsigned int ToReal(int* dig[], int l, int h)

{

unsigned int f = 0, I;

Start an iteration

for(I = h; I>=l;I--)

{

// Calculate individual value

f = f + dig[I] * pow(2,h-1);

}

return f;

}

// Main method start here

int main()

{

printf("Floating Point Conversion\n");

printf("Select any of the following options\n");

printf("1. Decimal to IEEE754 Conversion\n");

printf("2. IEEE754 to Decimal Conversion\n");

printf("3. Quit");

// Declare integer variable for option

int opt;

// Prompt to select option

printf("Select an option; Option 1 to 3: ");

scanf("%d", $opt);

if(opt == 1)

{

printf("You have selected option 1");

// Declare a user defined variable and a system defined variable

myfloat var; float number;

// Accept input

scanf("%d", number);

// Check for special cases

if(isnan(number/0.0))// Not a number

{

printf("Not a Number");

}

else

{

var.f = number;

// Print Sign

printf("%d | ", var.raw.sign);

// Print Exponent

ToFloat(var.raw.exp,8);

printf(" | ");

// Print Mantissa

ToFloat(var.raw.mant,23);

}

}// End of option 1;

// Beginning of option 2

else if(opt == 2)

{

printf("You have selected option 2");

// Declare an array and two integer variables

unsigned int number[32];

int ctrlno, I = 0;

// Accept input by through an iteration

for(int k = 0; k < 32; k++)

{

// Create a label

label: scanf("%d", ctrlno);

// Check for special cases

if(isnan(ctrlno/0.0))// Not a number

{

printf("Not a Number"); I++;

break;

}

else if(ctrlno>1 || ctrlno < 0)

{

printf("Invalid Number\n Please enter a valid digit");

goto label;

}

else {

// Assign number to array

number[k] = ctrlno;

}

// Check validity of number

if(I != 0)

{

printf(" Invalid Number Representation");

}

else

{

// Declare user defined variable

myfloat var;

// Get sign

var.raw.sign = number[0];

// Get mantissa; From to 31

unsigned f = ToReal(number,9,31);

var.raw.mant = f;

// Get exponent; 1 to 8

f = ToReal(number,1,8);

var.raw.exp = f;

// Print Output

printf("The converted digit is ");

printf("%f", var.f);

}

else

{

// Quit Application

break;

}

return 0;

}

3 0
3 years ago
Other questions:
  • Are engineers needed in today’s society ? Why or why not ? I need a short three paragraph essay !!! Please help me !!!
    13·1 answer
  • An aluminum metal rod is heated to 300oC and, upon equilibration at this temperature, it features a diameter of 25 mm. If a tens
    14·2 answers
  • As of January 1, 2018, Farley Co. had a credit balance of $534,000 in its allowance for uncollectible accounts. Based on experie
    10·1 answer
  • A(n)______ is a device used to ensure positive position of a valve or damper actuator A. calibrator B. positioner C. actuator D.
    6·1 answer
  • Ninety-five percent of the acetone vapor in an 85 vol.% air stream is to be absorbed by countercurrent contact with pure water i
    11·1 answer
  • ________ is the most theoretical computing discipline, focusing mostly on finding new and better ways for computers to work
    9·1 answer
  • A compressed-air drill requires an air supply of 0.25 kg/s at gauge pressure of 650 kPa at the drill. The hose from the air comp
    6·1 answer
  • An ideal Diesel Cycle has a compression ratio of 18 and a cutoff ratio of 1.5. Determine the maximum air temperature and the rat
    14·1 answer
  • I NEED HELP HERE SUM POINTS ( i will report if you put a link and or no answer
    13·1 answer
  • 1. Band saw lower wheel does not require a guard *
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!