Answer:
<h3>Hey there ! </h3><h3>Here is your Answer Buddy | </h3>
<h3>• Define Instance :- </h3>
- The data stored in database at a particular moment of time is called instance of database.
<h3>• Define Schema :- </h3>
- Database schema defines the variable declarations in tables that belong to a particular database
<h3><u>The value of these variables at a moment of time is called the instance of that database.</u></h3><h3 />
Explanation:
<h3>Hope this helps !! </h3>
Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem.
Answer:
The answer is "
"
Explanation:
Air flowing into the
Flow rate of the mass 
inlet temperature 
Pipeline
Its air is modelled as an ideal gas Apply the ideum gas rule to the air to calcule the basic volume v:




Answer:
Explanation:
Mean temperature is given by

Tmean = (Ti + T∞)/2

Tmean = 107.5⁰C
Tmean = 107.5 + 273 = 380.5K
Properties of air at mean temperature
v = 24.2689 × 10⁻⁶m²/s
α = 35.024 × 10⁻⁶m²/s
= 221.6 × 10⁻⁷N.s/m²
= 0.0323 W/m.K
Cp = 1012 J/kg.K
Pr = v/α = 24.2689 × 10⁻⁶/35.024 × 10⁻⁶
= 0.693
Reynold's number, Re
Pv = 4m/πD²
where Re = (Pv * D)/
Substituting for Pv
Re = 4m/(πD
)
= (4 x 0.003)/( π × 6 ×10⁻³ × 221.6 × 10⁻⁷)
= 28728.3
Since Re > 2000, the flow is turbulent
For turbulent flows, Use
Dittus - Doeltr correlation with n = 0.03
Nu = 0.023Re⁰⁸Pr⁰³ = (h₁D)/k
(h₁ × 0.006)/0.0323 = 0.023(28728.3)⁰⁸(0.693)⁰³
(h₁ × 0.006)/0.0323 = 75.962
h₁ = (75.962 × 0.0323)/0.006
h₁ = 408.93 W/m².K