The answer is c. the force of his swing
At the time of the impact, there is a collision between two bodies moving in opposite directions.
The force exerted on the ball causes the change of velocity.
Explanation:
It is given that,
Force, 
Position vector, 
(a) The torque on the particle about the origin is given by :

(b) To find the angle between r and F use dot product formula as :

Hence, this is the required solution.
Answer:

Explanation:
Given data
Space vehicle speed=5425 km/h relative to earth
The rocket motor speed=81 km/h and mass 4m
The command has mass m
From the conservation of momentum as the system isolated

Since the motion in on direction we can drop the unit vector direction

Where M is the mass of space vehicle which equals to sum of the motors mass and command mass.
The velocity of the motor relative to the earth equals the velocity of the motor relative to command plus the velocity of the command relative to earth

Where Vmc is the velocity of motor relative to command
This yields

Substitute the given values
False. Since the forces are pulling in equal and opposite directions, the net force is 0.
Substitute your values into the formula:
W = Work done = 288
= 360
Solve to find e:
e = 288 ÷ 360 = 0.8
Convert e to a percentage by multiplying by 100.
0.8 × 100 = 80
<h2>D. 80%</h2>