Answer:
you need to give the answers choices
Explanation:
Answer:
3.7 A
Explanation:
Parameters given:
Magnetic field strength, B = 5 * 10^(-5) T
Distance of magnetic field from wire, r = 1.5 cm = 0.015 m
The magnetic field, B, due to a current, I, flowing a wire is given as:
B = (μ₀*I) / 2πr
Where μ₀ = permeability of free space
To get the current, I, we make I the subject of the formula:
I = (2πr * B) / μ₀
I = (2 * 3.142 * 5 * 10^(-5)) / (1.25663706 × 10^(-6))
I = 3.7 A
Answer:
7200 kg.m/s
Explanation:
According the law of conservation of linear momentum, the sum of momentum before and after collision are equal.
Using this principle, the sum of initial momentum will be given as p=mv where p is momentum, m is mass and v is velocity
Initial momentum
Mass of whale*initial velocity of whale + mass of seal*initial seal velocity
Since the seal is initially stationary, its velocity is zero. By substitution and taking right direction as positive
Initial momentum will be
1200*6+(280*0)=7200 kg.m/s
Since both initial and final momentum should be equal, hence the final momentum will also be 7200 kg.m/s
Answer:
7 m/s
Explanation:
To solve this problem you must use the conservation of energy.

That math speak for, initial kinetic energy plus initial potential energy equals final kinetic energy plus final potential energy.
The initial PE (potential energy) is 0 because it hasn't been raised in the air yet. The final KE (kinetic energy) is 0 because it isn't moving. This gives the following:


K1=U2

Solve for v

Input known values and you get 7 m/s.