Answer:
25032.47 W
Explanation:
Power is the time rate of doing work, hence,
P = Work done(non conservative) / time
Work done (non conservative) is given as:
W = total K. E. + total P. E.
Total K. E. = 0.5mv²- 0.5mu²
Where v (final velocity) = 7.0m/s, u (initial velocity) = 0m/s
Total P. E. = mgh(f) - mgh(i)
Where h(f) (final height) = 7.2m, h(i) (initial height) = 0 m
=> W = 0.5mv² - mgh(f)
P = [0.5mv² - mgh(f)] / t
P = [(0.5*790*7²) - (790*9.8*7.2)] / 3
P = (19355 + 55742.4) / 3 = 75097.4/3
P = 25032.47 W
Answer:
The value is
Explanation:
From the question we are told that
The amount of power delivered is 
The time taken is 
The wavelength is 
Generally the energy delivered is mathematically represented as

Where
is the Planck's constant with value 
c is the speed of light with value 
So

=> 
The aggregate demand curve will also decrease. If supply is not high and there is no circulating income or monetary value that's happening in a particular market, then the demand of consumers will also go down. This is because the need for production is no longer necessary because there will be no consumers to purchase goods and services from the market.
Answer:
is this it?
Explanation:
λ = h/mv, where λ is wavelength, h is Planck's constant, m is the mass of a particle, moving at a velocity v. de Broglie suggested that particles can exhibit properties of waves.