With the answer being
125350.4522 C
Answer:
D
Explanation:
The unit used to measure atomic mass is the atomic mass unit (amu). A single amu is equivalent to 1/12 the mass of an atom from the carbon-12 isotopIsotopes with different numbers of protons and neutrons will have an actual mass slightly different from the atomic mass calculated in atomic mass units.
The pair of both compounds that have the same empirical formula are C6H12O6 and HC2H3O2. The answer is letter D. <span>H2O and H2O2, BaSO4 and BaSO3 and FeO and Fe2O3 do not have the same empirical formula.</span>
<span>All metals have similar properties BUT, there can be wide variations in melting point, boiling point, density, electrical conductivity and physical strength.<span>To explain the physical properties of metals like iron or sodium we need a more sophisticated picture than a simple particle model of atoms all lined up in close packed rows and layers, though this picture is correctly described as another example of a giant lattice held together by metallic bonding.</span><span>A giant metallic lattice – the <span>crystal lattice of metals consists of ions (NOT atoms) </span>surrounded by a 'sea of electrons' that form the giant lattice (2D diagram above right).</span><span>The outer electrons (–) from the original metal atoms are free to move around between the positive metal ions formed (+).</span><span>These 'free' or 'delocalised' electrons from the outer shell of the metal atoms are the 'electronic glue' holding the particles together.</span><span>There is a strong electrical force of attraction between these <span>free electrons </span>(mobile electrons or 'sea' of delocalised electrons)<span> (–)</span> and the 'immobile' positive metal ions (+) that form the giant lattice and this is the metallic bond. The attractive force acts in all directions.</span><span>Metallic bonding is not directional like covalent bonding, it is like ionic bonding in the sense that the force of attraction between the positive metal ions and the mobile electrons acts in every direction about the fixed (immobile) metal ions of the metal crystal lattice, but in ionic lattices none of the ions are mobile. a big difference between a metal bond and an ionic bond.</span><span>Metals can become weakened when repeatedly stressed and strained.<span><span>This can lead to faults developing in the metal structure called 'metal fatigue' or 'stress fractures'.</span><span>If the metal fatigue is significant it can lead to the collapse of a metal structure.</span></span></span></span>
Gee. I'll have to guess at what's "commonly thought".
One thing is the scale. Nobody has an accurate picture of the scale in
his head, because we never see a true-scale drawing. THAT's because
it's almost impossible to draw one on paper.
Example:
Shrink the solar system and everything in it so that the Sun
is the size of a quarter (the 25¢ coin).
Then:
-- The Earth is in orbit around the sun, 8.6 feet from it.
That's close enough that you might think you could find the
shrunken Earth. Unfortunately, it's only 0.009 inch in diameter.
-- The shrunken Jupiter is a 'huge' gas giant almost 0.1 inch in diameter.
It's orbiting the sun, about 45 feet away from it.
-- The shrunken Uranus is another gas giant, about 0.035 inch in diameter.
It's orbiting the sun, about 165 feet away from it.
-- The nearest star outside of the solar system is 441 MILES away !
On the same shrunken scale !
And there's NOTHING between here and there !
I think that's the biggest point to make about the REAL solar system ...
its utter emptiness. With the sun reduced to something you can hold
in your hand, the planets are the size of grains of sand, with hundreds
of feet of nothingness between them.
Same for its mass: The solar system is approximately nothing but a star.
That's it. A star, with some dust and some gas around it, and here and there
in the neighborhood a microscopic pebble or a chip of mineral. But mostly
it's nothing but a star ... if you went around and gathered up all that other
rubbish in the same bag and called it a part of the same solar system, the
sun would still have more than 99% of the total mass, and the bag would
hold less than 1% of it.
Book ... It's getting late, Hillary's fading, and that's all I can think of.
I hope this much is some help.