1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvv77 [185]
3 years ago
15

A race-car driver achiveved a speed of speed of m/s in 14 seconds after taking off from ready at the starting line . What was th

e average acceleration during this time?
Physics
1 answer:
vladimir2022 [97]3 years ago
5 0
Average acceleration = (change in speed) / (time for the change)

Average acceleration =

(speed at the end of the 14 seconds) / (14 seconds)
You might be interested in
How long does the president serve a term in office
Ilya [14]

Answer:

United States Electoral College to a four-year term, with a term limit of two terms (totaling eight years) or a maximum of ten years if the president acted as president for two years or less in a term

Explanation:

4 0
3 years ago
Read 2 more answers
Which of the following statements is a true statement about the use of nuclear energy as an alternative energy source?
ELEN [110]

Answer:

Production of electricity from nuclear energy is a lot more expensive than production of energy from fossil fuels

Explanation:

uranium is one of the rarest elements on earth, its more expensive than gas and oil, and it makes the same if not more pollution.

7 0
3 years ago
What does the 4 mean in 4Cu(NO3)2
kotegsom [21]

Answer:

4) Coefficent in science

5 0
4 years ago
A 200.0 g block rests on a frictionless, horizontal surface. It is pressed against a horizontal spring with spring constant 4500
kenny6666 [7]

Answer:

 6 m/s

Explanation:

Given that :

mass of the block   m =  200.0 g  = 200 × 10⁻³ kg

the horizontal spring constant   k  =  4500.0 N/m

position of the block (distance x) = 4.00 cm  = 0.04 m

To determine the speed the block will be traveling when it leaves the spring; we applying the  work done on the spring as it is stretched (or compressed) with the kinetic energy.

i.e \frac{1}{2} kx^2  = \frac{1}{2} mv^2

kx^2 = mv^2

4500* 0.04^2 = 200*10^{-3} *v^2

7.2 =200*10^{-3}*v^{2}

v^{2}   =\frac{7.2}{200*10^{-3}}

v   =\sqrt{\frac{7.2}{200*10^{-3}}}

v = 6 m/s

Hence,the speed the block will be traveling when it leaves the spring is  6 m/s

5 0
4 years ago
A two-liter bottle of your favorite beverage has just been removed from the trunk of your car. The temperature of the beverage i
Ksivusya [100]

Answer:

a) 209.3 kilojoules must be removed from two liter of beverage, b) A rate of heat removal of 1.163 kilowatts is required to cool down 10 2-liter bottles, c) Cooling 10 2-L bottles during 30 minutes costs 4.9 cents.

Explanation:

a) <em>How much heat energy must be removed from your two liters of beverage?</em>

At first we suppose that the beverage has the mass and specific heat of water and that there are no energy interactions between the bottle and its surroundings.

From the First Law of Thermodynamics and definition of sensible heat, we get that amount of removed heat (Q), measured in kilojoules, is represented by the following formula:

Q = \rho \cdot V\cdot c\cdot (T_{o}-T_{f}) (Eq. 1)

Where:

\rho - Density of the beverage, measured in kilograms per cubic meter.

V - Volume of the bottle, measured in cubic meters.

c - Specific heat of water, measured in kilojoules per kilogram-Celsius.

T_{o}, T_{f} - Initial and final temperatures, measured in Celsius.

If we know that \rho = 1000\,\frac{kg}{m^{3}}, V = 2\times 10^{-3}\,m^{3}, c = 4.186\,\frac{kJ}{kg\cdot ^{\circ}C}, T_{o} = 35\,^{\circ}C and T_{f} = 10\,^{\circ}C, then:

Q = \left(1000\,\frac{kg}{m^{3}}\right)\cdot (2\times 10^{-3}\,m^{3})\cdot \left(4.186\,\frac{kJ}{kg\cdot ^{\circ}C} \right) \cdot (35\,^{\circ}C-10\,^{\circ}C)

Q = 209.3\,kJ

209.3 kilojoules must be removed from two liter of beverage.

b) <em>You are having a party and need to cool 10 of these two-liter bottles in one-half hour. What rate of heat removal, in kW, is required?</em>

The total amount of heat that must be removed from 10 2-L bottles is:

Q_{T} = 10\cdot (209.3\,kJ)

Q_{T} = 2093\,kJ

If we suppose that bottles are cooled at constant rate, then, rate of heat removal is determined by this formula:

\dot Q = \frac{Q_{T}}{\Delta t} (Eq. 2)

Where:

Q_{T} - Total heat, measured in kilojoules.

\Delta t - Time, measured in seconds.

\dot Q - Rate of heat removal, measured in kilowatts.

If we know that Q_{T} = 2093\,kJ and \Delta t = 1800\,s, we find that rate of heat removal is:

\dot Q = \frac{2093\,kJ}{1800\,s}

\dot Q = 1.163\,kW

A rate of heat removal of 1.163 kilowatts is required to cool down 10 2-liter bottles.

c) <em>Assuming that your refrigerator can accomplish this and that electricity costs 8.5 cents per kW-hr, how much will it cost to cool these 10 bottles (in $)?</em>

A kilowatt-hour equals 3600 kilojoules. The electricity cost is equal to the  removal heat of 10 bottles (Q_{T}), measured in kilojoules, and unit electricity cost (c), measured in US dollars per kilowatt-hour. That is:

C = c\cdot Q_{T}

If we know that c = 0.085\,\frac{USD}{kWh} and Q_{T} = 2093\,kJ, the total cost of cooling 10 bottles is:

C = \left(0.085\,\frac{USD}{kWh}\right)\cdot \left(2093\,kJ\right)\cdot \left(\frac{1}{3600}\,\frac{kWh}{kJ}  \right)

C = 0.049\,USD

Cooling 10 2-L bottles during 30 minutes costs 4.9 cents.

3 0
4 years ago
Other questions:
  • Describe one behavior that shows that light is a wave
    14·2 answers
  • A 610-N hiker carrying an 11.0-kg backpack hiked up a trail for 23 minutes. At the end of that time, he is 150 m higher than whe
    12·1 answer
  • Which sets of data show a wave with the shortest wavelength? A. Speed=100 million m/s and frequency = 50 million Hz. B. Speed=15
    12·1 answer
  • Question 5 of 34
    9·2 answers
  • On a 20 MHz oscilloscope as those used in class, the knob of the time sweep rate shows for the fastest setting the mark of 0.2 m
    6·1 answer
  • A waterwheel is an example of:
    13·2 answers
  • A ball (A) of mass 1.4kg is moving with a speed of 3.7m/s collides with a 0.55kg ball (B) which is at rest. If Ball A is going 2
    8·1 answer
  • Please help me I give good points
    15·1 answer
  • How to convert sin angles with values of 90 degrees, 60, 45, 30, 0 to cos degrees.
    12·1 answer
  • A baseball is hit with a speed of 27.0 m/s at an angle of 47.0 ∘ . It lands on the flat roof of a 10.0 m -tall nearby building.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!